Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/2d47eabcd04a744bccd0261a256f603d.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis | Science
Skip to main content
Advertisement
Main content starts here
No access
Report

piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis

Science
15 May 2015
Vol 348, Issue 6236
pp. 812-817

Spreading small RNAs to protect the genome

In animals, PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that protect our germ lines from the ravages of transposons. To do this, piRNAs target and cleave transposon RNAs. Synthesis of piRNA is initiated by a cut made in a long, single-stranded precursor RNA. The piRNAs can also undergo a self-perpetuating amplification cycle (see the Perspective by Siomi and Siomi). Han et al. and Mohn et al. now reveal that piRNA biogenesis can also spread in a strictly phased manner from the site of initial piRNA formation. Spreading piRNA synthesis greatly increases their sequence diversity, potentially helping them to target endogenous and novel transposons more effectively.
Science, this issue p. 817, p. 812; see also p. 756

Abstract

In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3′-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3′ and 5′ ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3′ end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5′ and 3′ ends.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S9
Tables S1 and S2
References (3039)

Resources

File (mohn.sm.pdf)

References and Notes

1
Malone C. D., Hannon G. J., Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).
2
Siomi M. C., Sato K., Pezic D., Aravin A. A., PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).
3
Pane A., Wehr K., Schüpbach T., zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851–862 (2007).
4
Ipsaro J. J., Haase A. D., Knott S. R., Joshua-Tor L., Hannon G. J., The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491, 279–283 (2012).
5
Nishimasu H., Ishizu H., Saito K., Fukuhara S., Kamatani M. K., Bonnefond L., Matsumoto N., Nishizawa T., Nakanaga K., Aoki J., Ishitani R., Siomi H., Siomi M. C., Nureki O., Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491, 284–287 (2012).
6
Saito K., Ishizu H., Komai M., Kotani H., Kawamura Y., Nishida K. M., Siomi H., Siomi M. C., Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 2493–2498 (2010).
7
Olivieri D., Sykora M. M., Sachidanandam R., Mechtler K., Brennecke J., An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301–3317 (2010).
8
Watanabe T., Chuma S., Yamamoto Y., Kuramochi-Miyagawa S., Totoki Y., Toyoda A., Hoki Y., Fujiyama A., Shibata T., Sado T., Noce T., Nakano T., Nakatsuji N., Lin H., Sasaki H., MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364–375 (2011).
9
Malone C. D., Brennecke J., Dus M., Stark A., McCombie W. R., Sachidanandam R., Hannon G. J., Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).
10
Lau N. C., et al., Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res. 19, 1776–1785 (2009).
11
Aravin A., Gaidatzis D., Pfeffer S., Lagos-Quintana M., Landgraf P., Iovino N., Morris P., Brownstein M. J., Kuramochi-Miyagawa S., Nakano T., Chien M., Russo J. J., Ju J., Sheridan R., Sander C., Zavolan M., Tuschl T., A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).
12
Girard A., Sachidanandam R., Hannon G. J., Carmell M. A., A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).
13
Li X. Z., Roy C. K., Dong X., Bolcun-Filas E., Wang J., Han B. W., Xu J., Moore M. J., Schimenti J. C., Weng Z., Zamore P. D., An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67–81 (2013).
14
Brennecke J., Aravin A. A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G. J., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).
15
Gunawardane L. S., Saito K., Nishida K. M., Miyoshi K., Kawamura Y., Nagami T., Siomi H., Siomi M. C., A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).
16
Vourekas A., Zheng Q., Alexiou P., Maragkakis M., Kirino Y., Gregory B. D., Mourelatos Z., Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol. 19, 773–781 (2012).
17
Kawaoka S., Izumi N., Katsuma S., Tomari Y., 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43, 1015–1022 (2011).
18
Klattenhoff C., Xi H., Li C., Lee S., Xu J., Khurana J. S., Zhang F., Schultz N., Koppetsch B. S., Nowosielska A., Seitz H., Zamore P. D., Weng Z., Theurkauf W. E., The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138, 1137–1149 (2009).
19
Zhang Z., Wang J., Schultz N., Zhang F., Parhad S. S., Tu S., Vreven T., Zamore P. D., Weng Z., Theurkauf W. E., The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157, 1353–1363 (2014).
20
Mohn F., Sienski G., Handler D., Brennecke J., The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157, 1364–1379 (2014).
21
Shpiz S., Ryazansky S., Olovnikov I., Abramov Y., Kalmykova A., Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the Drosophila germline. PLOS Genet. 10, e1004138 (2014).
22
See materials and methods and other supplementary materials on Science Online.
23
Swarts D. C., Makarova K., Wang Y., Nakanishi K., Ketting R. F., Koonin E. V., Patel D. J., van der Oost J., The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).
24
Wee L. M., Flores-Jasso C. F., Salomon W. E., Zamore P. D., Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).
25
Reuter M., Berninger P., Chuma S., Shah H., Hosokawa M., Funaya C., Antony C., Sachidanandam R., Pillai R. S., Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267 (2011).
26
Olivieri D., Senti K. A., Subramanian S., Sachidanandam R., Brennecke J., The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol. Cell 47, 954–969 (2012).
27
Huang H., Gao Q., Peng X., Choi S. Y., Sarma K., Ren H., Morris A. J., Frohman M. A., piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376–387 (2011).
28
Saxe J. P., Chen M., Zhao H., Lin H., Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 32, 1869–1885 (2013).
29
Honda S., Kirino Y., Maragkakis M., Alexiou P., Ohtaki A., Murali R., Mourelatos Z., Kirino Y., Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA 19, 1405–1418 (2013).
30
Markstein M., Pitsouli C., Villalta C., Celniker S. E., Perrimon N., Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483 (2008).
31
Doyle J. P., Dougherty J. D., Heiman M., Schmidt E. F., Stevens T. R., Ma G., Bupp S., Shrestha P., Shah R. D., Doughty M. L., Gong S., Greengard P., Heintz N., Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).
32
Jayaprakash A. D., Jabado O., Brown B. D., Sachidanandam R., Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141–e141 (2011).
33
Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T., Huber W., Iacus S., Irizarry R., Leisch F., Li C., Maechler M., Rossini A. J., Sawitzki G., Smith C., Smyth G., Tierney L., Yang J. Y., Zhang J., Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
34
Langmead B., Trapnell C., Pop M., Salzberg S. L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
35
Li C., Vagin V. V., Lee S., Xu J., Ma S., Xi H., Seitz H., Horwich M. D., Syrzycka M., Honda B. M., Kittler E. L., Zapp M. L., Klattenhoff C., Schulz N., Theurkauf W. E., Weng Z., Zamore P. D., Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).
36
Jurka J., Kapitonov V. V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J., Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
37
Wang W., Yoshikawa M., Han B. W., Izumi N., Tomari Y., Weng Z., Zamore P. D., The initial uridine of primary piRNAs does not create the tenth adenine that is the hallmark of secondary piRNAs. Mol. Cell 56, 708–716 (2014).
38
Heinz S., Benner C., Spann N., Bertolino E., Lin Y. C., Laslo P., Cheng J. X., Murre C., Singh H., Glass C. K., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
39
Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E., WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();