Notice: file_put_contents(): Write of 267298 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Ferriprotoporphyrin IX Fulfills the Criteria for Identification as the Chloroquine Receptor of Malaria Parasites. | Biochemistry
    Article

    Ferriprotoporphyrin IX Fulfills the Criteria for Identification as the Chloroquine Receptor of Malaria Parasites.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1980, 19, 8, 1543–1549
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00549a600
    Published April 15, 1980

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 310 publications.

    1. Julia C. R. Lindblom, Xinxin Zhang, Adele M. Lehane. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infectious Diseases 2024, 10 (4) , 1185-1200. https://doi.org/10.1021/acsinfecdis.3c00588
    2. Mirko Paulikat, GiovanniMaria Piccini, Emiliano Ippoliti, Giulia Rossetti, Fabio Arnesano, Paolo Carloni. Physical Chemistry of Chloroquine Permeation through the Cell Membrane with Atomistic Detail. Journal of Chemical Information and Modeling 2023, 63 (22) , 7124-7132. https://doi.org/10.1021/acs.jcim.3c01363
    3. Katherine A. de Villiers, Timothy J. Egan. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Accounts of Chemical Research 2021, 54 (11) , 2649-2659. https://doi.org/10.1021/acs.accounts.1c00154
    4. Sharné-Maré Fitzroy, Johandie Gildenhuys, Tania Olivier, Ndivhuwo Olga Tshililo, David Kuter, and Katherine Allison de Villiers . The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization. Langmuir 2017, 33 (30) , 7529-7537. https://doi.org/10.1021/acs.langmuir.7b01132
    5. Erin L. Dodd, Dagobert Tazoo, and D. Scott Bohle . Solution and Solid State Correlations of Antimalarial Drug Actions: NMR and Crystallographic Studies of Drug Interactions with a Heme Model. Inorganic Chemistry 2017, 56 (14) , 7803-7810. https://doi.org/10.1021/acs.inorgchem.7b00526
    6. Alexander P. Gorka, Angel de Dios, and Paul D. Roepe . Quinoline Drug–Heme Interactions and Implications for Antimalarial Cytostatic versus Cytocidal Activities. Journal of Medicinal Chemistry 2013, 56 (13) , 5231-5246. https://doi.org/10.1021/jm400282d
    7. Johandie Gildenhuys, Tanya le Roex, Timothy J. Egan, and Katherine A. de Villiers . The Single Crystal X-ray Structure of β-Hematin DMSO Solvate Grown in the Presence of Chloroquine, a β-Hematin Growth-Rate Inhibitor. Journal of the American Chemical Society 2013, 135 (3) , 1037-1047. https://doi.org/10.1021/ja308741e
    8. Jill M. Combrinck, Tebogo E. Mabotha, Kanyile K. Ncokazi, Melvin A. Ambele, Dale Taylor, Peter J. Smith, Heinrich C. Hoppe, and Timothy J. Egan . Insights into the Role of Heme in the Mechanism of Action of Antimalarials. ACS Chemical Biology 2013, 8 (1) , 133-137. https://doi.org/10.1021/cb300454t
    9. Christoph Herrmann, Paloma F. Salas, Jacqueline F. Cawthray, Carmen de Kock, Brian O. Patrick, Peter J. Smith, Michael J. Adam, and Chris Orvig . 1,1′-Disubstituted Ferrocenyl Carbohydrate Chloroquine Conjugates as Potential Antimalarials. Organometallics 2012, 31 (16) , 5736-5747. https://doi.org/10.1021/om300354x
    10. Christoph Herrmann, Paloma F. Salas, Brian O. Patrick, Carmen de Kock, Peter J. Smith, Michael J. Adam, and Chris Orvig . Modular Synthesis of 1,2- and 1,1′-Disubstituted Ferrocenyl Carbohydrate Chloroquine and Mefloquine Conjugates as Potential Antimalarial Agents. Organometallics 2012, 31 (16) , 5748-5759. https://doi.org/10.1021/om300392q
    11. Steven J. Burgess, Jane X. Kelly, Shawheen Shomloo, Sergio Wittlin, Reto Brun, Katherine Liebmann and David H. Peyton . Synthesis, Structure−Activity Relationship, and Mode-of-Action Studies of Antimalarial Reversed Chloroquine Compounds. Journal of Medicinal Chemistry 2010, 53 (17) , 6477-6489. https://doi.org/10.1021/jm1006484
    12. Grant T. Webster, Don McNaughton and Bayden R. Wood. Aggregated Enhanced Raman Scattering in Fe(III)PPIX Solutions: The Effects of Concentration and Chloroquine on Excitonic Interactions. The Journal of Physical Chemistry B 2009, 113 (19) , 6910-6916. https://doi.org/10.1021/jp811028a
    13. Wolfgang Friebolin, Beate Jannack, Nicole Wenzel, Julien Furrer, Thomas Oeser, Cecilia P. Sanchez, Michael Lanzer, Vanessa Yardley, Katja Becker and Elisabeth Davioud-Charvet. Antimalarial Dual Drugs Based on Potent Inhibitors of Glutathione Reductase from Plasmodium falciparum. Journal of Medicinal Chemistry 2008, 51 (5) , 1260-1277. https://doi.org/10.1021/jm7009292
    14. V. Raja Solomon,, W. Haq,, Kumkum Srivastava,, Sunil K. Puri, and, S. B. Katti. Synthesis and Antimalarial Activity of Side Chain Modified 4-Aminoquinoline Derivatives. Journal of Medicinal Chemistry 2007, 50 (2) , 394-398. https://doi.org/10.1021/jm061002i
    15. Bojana Gligorijevic,, Ryan McAllister,, Jeffrey S. Urbach, and, Paul D. Roepe. Spinning Disk Confocal Microscopy of Live, Intraerythrocytic Malarial Parasites. 1. Quantification of Hemozoin Development for Drug Sensitive versus Resistant Malaria. Biochemistry 2006, 45 (41) , 12400-12410. https://doi.org/10.1021/bi061033f
    16. Michael J. Dascombe,, Michael G. B. Drew,, Harry Morris,, Prapon Wilairat,, Saranya Auparakkitanon,, Wendy A. Moule,, Said Alizadeh-Shekalgourabi,, Philip G. Evans,, Michael Lloyd,, Anthony M. Dyas,, Pamela Carr, and, Fyaz M. D. Ismail. Mapping Antimalarial Pharmacophores as a Useful Tool for the Rapid Discovery of Drugs Effective in Vivo:  Design, Construction, Characterization, and Pharmacology of Metaquine. Journal of Medicinal Chemistry 2005, 48 (17) , 5423-5436. https://doi.org/10.1021/jm0408013
    17. Cecilia P. Sanchez,, Jeremy E. McLean,, Petra Rohrbach,, David A. Fidock,, Wilfred D. Stein, and, Michael Lanzer. Evidence for a pfcrt-Associated Chloroquine Efflux System in the Human Malarial Parasite Plasmodium falciparum. Biochemistry 2005, 44 (29) , 9862-9870. https://doi.org/10.1021/bi050061f
    18. Cecilia P. Sanchez,, Jeremy E. McLean,, Wilfred Stein, and, Michael Lanzer. Evidence for a Substrate Specific and Inhibitable Drug Efflux System in Chloroquine Resistant Plasmodium falciparum Strains. Biochemistry 2004, 43 (51) , 16365-16373. https://doi.org/10.1021/bi048241x
    19. Timothy J. Egan,, Klaus R. Koch,, Paul L. Swan,, Cailean Clarkson,, Donelly A. Van Schalkwyk, and, Peter J. Smith. In Vitro Antimalarial Activity of a Series of Cationic 2,2‘-Bipyridyl- and 1,10-Phenanthrolineplatinum(II) Benzoylthiourea Complexes. Journal of Medicinal Chemistry 2004, 47 (11) , 2926-2934. https://doi.org/10.1021/jm031132g
    20. Jeffrey R. Johnson,, Laurence Florens,, Daniel J. Carucci, and, John R. Yates III. Proteomics in Malaria. Journal of Proteome Research 2004, 3 (2) , 296-306. https://doi.org/10.1021/pr0340781
    21. Dennis K. Taylor,, Thomas D. Avery,, Ben W. Greatrex,, Edward R. T. Tiekink,, Ian G. Macreadie,, Peter I. Macreadie,, Adam D. Humphries,, Martha Kalkanidis,, Emma N. Fox,, Nectarios Klonis, and, Leann Tilley. Novel Endoperoxide Antimalarials:  Synthesis, Heme Binding, and Antimalarial Activity. Journal of Medicinal Chemistry 2004, 47 (7) , 1833-1839. https://doi.org/10.1021/jm0305319
    22. Srinivasa R. Cheruku,, Souvik Maiti,, Arnulf Dorn,, Bernard Scorneaux,, Apurba K. Bhattacharjee,, William Y. Ellis, and, Jonathan L. Vennerstrom. Carbon Isosteres of the 4-Aminopyridine Substructure of Chloroquine:  Effects on pKa, Hematin Binding, Inhibition of Hemozoin Formation, and Parasite Growth. Journal of Medicinal Chemistry 2003, 46 (14) , 3166-3169. https://doi.org/10.1021/jm030038x
    23. Paul A. Stocks,, Kaylene J. Raynes,, Patrick G. Bray,, B. Kevin Park,, Paul. M. O'Neill, and, Stephen A. Ward. Novel Short Chain Chloroquine Analogues Retain Activity Against Chloroquine Resistant K1 Plasmodium falciparum. Journal of Medicinal Chemistry 2002, 45 (23) , 4975-4983. https://doi.org/10.1021/jm0108707
    24. Stephen Hindley,, Stephen A. Ward,, Richard C. Storr,, Natalie L. Searle,, Patrick G. Bray,, B. Kevin Park,, Jill Davies, and, Paul M. O'Neill. Mechanism-Based Design of Parasite-Targeted Artemisinin Derivatives:  Synthesis and Antimalarial Activity of New Diamine Containing Analogues. Journal of Medicinal Chemistry 2002, 45 (5) , 1052-1063. https://doi.org/10.1021/jm0109816
    25. Anthony D. Wright,, Huiqin Wang,, Marion Gurrath,, Gabriele M. König,, Gulcan Kocak,, Gregory Neumann,, Paul Loria,, Michael Foley, and, Leann Tilley. Inhibition of Heme Detoxification Processes Underlies the Antimalarial Activity of Terpene Isonitrile Compounds from Marine Sponges. Journal of Medicinal Chemistry 2001, 44 (6) , 873-885. https://doi.org/10.1021/jm0010724
    26. James Ziegler,, Theresa Schuerle,, Lisa Pasierb,, Crystal Kelly,, Ashraf Elamin,, Kelly A. Cole, and, David W. Wright. The Propionate of Heme Binds N4O2 Schiff Base Antimalarial Drug Complexes. Inorganic Chemistry 2000, 39 (16) , 3731-3733. https://doi.org/10.1021/ic000295h
    27. Sudha Rani Vippagunta,, Arnulf Dorn,, Hugues Matile,, Apurba K. Bhattacharjee,, Jean M. Karle,, William Y. Ellis,, Robert G. Ridley, and, Jonathan L. Vennerstrom. Structural Specificity of Chloroquine−Hematin Binding Related to Inhibition of Hematin Polymerization and Parasite Growth. Journal of Medicinal Chemistry 1999, 42 (22) , 4630-4639. https://doi.org/10.1021/jm9902180
    28. Kaylene J. Raynes,, Paul A. Stocks,, Paul M. O'Neill,, B. Kevin Park, and, Stephen A. Ward. New 4-Aminoquinoline Mannich Base Antimalarials. 1. Effect of an Alkyl Substituent in the 5‘-Position of the 4‘-Hydroxyanilino Side Chain. Journal of Medicinal Chemistry 1999, 42 (15) , 2747-2751. https://doi.org/10.1021/jm9901374
    29. Paul M. O'Neill,, David J. Willock,, Shaun R. Hawley,, Patrick G. Bray,, Richard C. Storr,, Stephen A. Ward, and, B. Kevin Park. Synthesis, Antimalarial Activity, and Molecular Modeling of Tebuquine Analogues. Journal of Medicinal Chemistry 1997, 40 (4) , 437-448. https://doi.org/10.1021/jm960370r
    30. Anne Robert, Lucie Paloque, Jean‐Michel Augereau, Flore Nardella, Michel Nguyen, Bernard Meunier, Françoise Benoit‐Vical. Hybrid Molecules as Efficient Drugs against Multidrug‐Resistant Malaria Parasites. ChemMedChem 2025, 20 (11) https://doi.org/10.1002/cmdc.202500086
    31. Bhupendra Singh, Dipak Chetia, Mukesh Kumar Kumawat. Synthesis and Characterization of Phenylenediamine Side‐Chain‐Modified 4‐Aminoquinoline Mannich Bases and Evaluation of their in vitro Antimalarial Activity. ChemistrySelect 2024, 9 (1) https://doi.org/10.1002/slct.202303056
    32. Artem R. Ariukov, Alexey I. Solovev, Anna A. Krutikova, Alexander N. Kovalenko, Vladimir A. Kapatsyna, Vladimir A. Romanenko. Development of a technique for analyzing the lengths of restriction fragments to assess the mefloquine resistance of plasmodium falciparum based on the identification of single-nucleotide polymorphisms (A958146T, A961013G, G961625T) of the PFMDR1 gene. Bulletin of the Russian Military Medical Academy 2023, 25 (2) , 249-260. https://doi.org/10.17816/brmma387427
    33. Chaudhary Sunita, Khodakiya Akruti, Chaudhary Ankit, Jayvadan K. Patel. Dendrimers in Malaria. 2023, 139-160. https://doi.org/10.1007/978-3-031-15848-3_7
    34. Dalton L. Glasco, Art Matthew Mamaril, Anjaiah Sheelam, Nguyen H. B. Ho, Jeffrey G. Bell. Selective Detection of Chloroquine in Human Urine with Application at the Point-of-Care. Journal of The Electrochemical Society 2022, 169 (7) , 077513. https://doi.org/10.1149/1945-7111/ac80d7
    35. Debasish Kumar Ghosh, Abhishek Kumar, Akash Ranjan. Cellular targets of mefloquine. Toxicology 2021, 464 , 152995. https://doi.org/10.1016/j.tox.2021.152995
    36. Bhupendra Singh, Dipak Chetia, Mukesh Kumar Kumawat. Synthesis and In Vitro Antimalarial Activity Evaluation of Some New 1,2-Diaminopropane Side-Chain-Modified 4-Aminoquinoline Mannich Bases. Pharmaceutical Chemistry Journal 2021, 55 (7) , 724-731. https://doi.org/10.1007/s11094-021-02484-z
    37. John Oludele Olanlokun, Janet Adenike Adetutu, Olabode Olufunso Olorunsogo. ln vitro inhibition of beta-hematin formation and in vivo effects of Diospyros mespiliformis and Mondia whitei methanol extracts on chloroquine-susceptible Plasmodium berghei-induced malaria in mice. Interventional Medicine and Applied Science 2021, 11 (4) , 197-206. https://doi.org/10.1556/1646.2020.00001
    38. Fabien Schultz, Ogechi Favour Osuji, Anh Nguyen, Godwin Anywar, John R. Scheel, Guy Caljon, Luc Pieters, Leif-Alexander Garbe. Pharmacological Assessment of the Antiprotozoal Activity, Cytotoxicity and Genotoxicity of Medicinal Plants Used in the Treatment of Malaria in the Greater Mpigi Region in Uganda. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.678535
    39. Ana M. Untaroiu, Maureen A. Carey, Jennifer L. Guler, Jason A. Papin. Leveraging the effects of chloroquine on resistant malaria parasites for combination therapies. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-2756-y
    40. Lungowe Sitali, Mulenga C. Mwenda, John M. Miller, Daniel J. Bridges, Moonga B. Hawela, Elizabeth Chizema-Kawesha, James Chipeta, Bernt Lindtjørn. En-route to the ‘elimination’ of genotypic chloroquine resistance in Western and Southern Zambia, 14 years after chloroquine withdrawal. Malaria Journal 2019, 18 (1) https://doi.org/10.1186/s12936-019-3031-4
    41. Anju Singh, Md Kalamuddin, Asif Mohmmed, Pawan Malhotra, Nasimul Hoda. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Advances 2019, 9 (67) , 39410-39421. https://doi.org/10.1039/C9RA06571G
    42. Blaise Kimbadi Lombe, Doris Feineis, Gerhard Bringmann. Dimeric naphthylisoquinoline alkaloids: polyketide-derived axially chiral bioactive quateraryls. Natural Product Reports 2019, 36 (11) , 1513-1545. https://doi.org/10.1039/C9NP00024K
    43. Christopher J Parkinson, Geoffrey W Birrell, Marina Chavchich, Donna Mackenzie, Richard K Haynes, Carmen de Kock, Des R Richardson, Michael D Edstein. Development of pyridyl thiosemicarbazones as highly potent agents for the treatment of malaria after oral administration. Journal of Antimicrobial Chemotherapy 2019, 74 (10) , 2965-2973. https://doi.org/10.1093/jac/dkz290
    44. Subhashree Rout, Rajani Kanta Mahapatra. Plasmodium falciparum : Multidrug resistance. Chemical Biology & Drug Design 2019, 93 (5) , 737-759. https://doi.org/10.1111/cbdd.13484
    45. Fady N. Akladios, Scott D. Andrew, Samantha J. Boog, Carmen de Kock, Richard K. Haynes, Christopher J. Parkinson. The Evaluation of Metal Co-ordinating Bis-Thiosemicarbazones as Potential Anti-malarial Agents. Medicinal Chemistry 2019, 15 (1) , 51-58. https://doi.org/10.2174/1573406414666180525132204
    46. Juveria Khan, Monika Kaushik, Shailja Singh. Molecular Mechanisms of Action and Resistance of Antimalarial Drugs. 2019, 267-296. https://doi.org/10.1007/978-981-13-8503-2_14
    47. Omar Rifaie‐Graham, Xiao Hua, Nico Bruns, Sandor Balog. The Kinetics of β‐Hematin Crystallization Measured by Depolarized Light Scattering. Small 2018, 14 (46) https://doi.org/10.1002/smll.201802295
    48. Andreas Martin Lisewski, Joel Patrick Quiros, Monica Mittal, Nagireddy Putluri, Arun Sreekumar, Jesper Z. Haeggström, Olivier Lichtarge. Potential role of Plasmodium falciparum exported protein 1 in the chloroquine mode of action. International Journal for Parasitology: Drugs and Drug Resistance 2018, 8 (1) , 31-35. https://doi.org/10.1016/j.ijpddr.2017.12.003
    49. Tara Rava Zolnikov. Vector-Borne Disease. 2018, 113-126. https://doi.org/10.1007/978-3-319-69026-1_9
    50. Seon-Ju Yeo, Dong-Xu Liu, Hak Sung Kim, Hyun Park. Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria. Malaria Journal 2017, 16 (1) https://doi.org/10.1186/s12936-017-1725-z
    51. Uday Krishna Baruah, Kuppusamy Gowthamarajan, Ravisankar Vanka, Veera Venkata Satyanarayana Reddy Karri, Kousalya Selvaraj, Gifty M. Jojo. Malaria treatment using novel nano-based drug delivery systems. Journal of Drug Targeting 2017, 25 (7) , 567-581. https://doi.org/10.1080/1061186X.2017.1291645
    52. Alistair J. Fielding, Valentina Lukinović, Philip G. Evans, Said Alizadeh‐Shekalgourabi, Roger H. Bisby, Michael G. B. Drew, Verity Male, Alessio Del Casino, James F. Dunn, Laura E. Randle, Nicola M. Dempster, Lutfun Nahar, Satyajit D. Sarker, Fabián G. Cantú Reinhard, Sam P. de Visser, Mike J. Dascombe, Fyaz M. D. Ismail. Modulation of Antimalarial Activity at a Putative Bisquinoline Receptor In Vivo Using Fluorinated Bisquinolines. Chemistry – A European Journal 2017, 23 (28) , 6811-6828. https://doi.org/10.1002/chem.201605099
    53. Dikima D. Bibelayi, Pitchouna I. Kilunga, Albert S. Lundemba, Matthieu K. Bokolo, Pius T. Mpiana, Philippe V. Tsalu, Juliette Pradon, Colin C. Groom, Celine W. Kadima, Luc Van Meervelt, Zephyrin G. Yav. Interaction of Iron(III)-5,10,15,20-Tetrakis (4-Sulfonatophenyl) Porphyrin with Chloroquine, Quinine and Quinidine. Crystal Structure Theory and Applications 2017, 06 (03) , 25-38. https://doi.org/10.4236/csta.2017.63003
    54. Mukesh Kumar Kumawat, Udaya Pratap Singh, Bhupendra Singh, Anil Prakash, Dipak Chetia. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylamino)propyl)-1,3-thiazinan-4-one derivatives. Arabian Journal of Chemistry 2016, 9 , S643-S647. https://doi.org/10.1016/j.arabjc.2011.07.007
    55. David C. Warhurst, John C. Craig, K. Saki Raheem, . Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance. PLOS ONE 2016, 11 (8) , e0160091. https://doi.org/10.1371/journal.pone.0160091
    56. David Kuter, Victor Streltsov, Natalia Davydova, Gerhard A. Venter, Kevin J. Naidoo, Timothy J. Egan. Solution structures of chloroquine–ferriheme complexes modeled using MD simulation and investigated by EXAFS spectroscopy. Journal of Inorganic Biochemistry 2016, 154 , 114-125. https://doi.org/10.1016/j.jinorgbio.2015.06.010
    57. Serena Pulcini, Henry M. Staines, Andrew H. Lee, Sarah H. Shafik, Guillaume Bouyer, Catherine M. Moore, Daniel A. Daley, Matthew J. Hoke, Lindsey M. Altenhofen, Heather J. Painter, Jianbing Mu, David J. P. Ferguson, Manuel Llinás, Rowena E. Martin, David A. Fidock, Roland A. Cooper, Sanjeev Krishna. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14552
    58. Prinka Singla, Vijay Luxami, Kamaldeep Paul. Triazine as a promising scaffold for its versatile biological behavior. European Journal of Medicinal Chemistry 2015, 102 , 39-57. https://doi.org/10.1016/j.ejmech.2015.07.037
    59. Joel Vega-Rodríguez, Rebecca Pastrana-Mena, Keila N. Crespo-Lladó, José G. Ortiz, Iván Ferrer-Rodríguez, Adelfa E. Serrano, . Implications of Glutathione Levels in the Plasmodium berghei Response to Chloroquine and Artemisinin. PLOS ONE 2015, 10 (5) , e0128212. https://doi.org/10.1371/journal.pone.0128212
    60. Rick M. Fairhurst, Thomas E. Wellems. Malaria (Plasmodium Species). 2015, 3070-3090.e9. https://doi.org/10.1016/B978-1-4557-4801-3.00276-9
    61. Johandie Gildenhuys, Chandre J. Sammy, Ronel Müller, Victor A. Streltsov, Tanya le Roex, David Kuter, Katherine A. de Villiers. Alkoxide coordination of iron( iii ) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. Dalton Transactions 2015, 44 (38) , 16767-16777. https://doi.org/10.1039/C5DT02671G
    62. Faustine Dubar, Christophe Biot. On the Molecular Mechanisms of the Antimalarial Action of Ferroquine. 2014, 141-164. https://doi.org/10.1002/9783527673438.ch05
    63. Anne-Catrin Uhlemann, Yongyuth Yuthavong, David A. Fidock. Mechanisms of Antimalarial Drug Action and Resistance. 2014, 427-461. https://doi.org/10.1128/9781555817558.ch23
    64. Karen Hayton, Rick M. Fairhurst, Bronwen Naudé, Xin-Zhuan Su, Thomas E. Wellems. Drug-Resistant Falciparum Malaria: Mechanisms, Consequences, and Challenges. 2014, 401-413. https://doi.org/10.1128/9781555817572.ch30
    65. David Kuter, Stefan J. Benjamin, Timothy J. Egan. Multiple spectroscopic and magnetic techniques show that chloroquine induces formation of the μ-oxo dimer of ferriprotoporphyrin IX. Journal of Inorganic Biochemistry 2014, 133 , 40-49. https://doi.org/10.1016/j.jinorgbio.2014.01.002
    66. Matthew D. Lewis, Johannes Pfeil, Kirsten Heiss, Ann-Kristin Mueller, . CD8+ T Cells Mediate Robust Stage-Specific Immunity to P. berghei under Chemoprophylaxis and This Protective Environment Is Not Downregulated by the Presence of Blood-Stage Infection. PLoS ONE 2014, 9 (2) , e88117. https://doi.org/10.1371/journal.pone.0088117
    67. Pardeep Singh, Raghu Raj, Parvesh Singh, Jiri Gut, Philip J. Rosenthal, Vipan Kumar. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: Synthesis and in vitro antimalarial evaluation. European Journal of Medicinal Chemistry 2014, 71 , 128-134. https://doi.org/10.1016/j.ejmech.2013.10.079
    68. Erin L. Dodd, D. Scott Bohle. Orienting the heterocyclic periphery: a structural model for chloroquine's antimalarial activity. Chem. Commun. 2014, 50 (89) , 13765-13768. https://doi.org/10.1039/C4CC05328A
    69. JONATHAN M. MWANGI, LISA C. RANFORD-CARTWRIGHT. Genetic and genomic approaches for the discovery of parasite genes involved in antimalarial drug resistance. Parasitology 2013, 140 (12) , 1455-1467. https://doi.org/10.1017/S0031182013000954
    70. Eva-Maria Patzewitz, J. Enrique Salcedo-Sora, Eleanor H. Wong, Sonal Sethia, Paul A. Stocks, Spencer C. Maughan, James A.H. Murray, Sanjeev Krishna, Patrick G. Bray, Stephen A. Ward, Sylke Müller. Glutathione Transport: A New Role for PfCRT in Chloroquine Resistance. Antioxidants & Redox Signaling 2013, 19 (7) , 683-695. https://doi.org/10.1089/ars.2012.4625
    71. Mithun Rudrapal, Dipak Chetia, Anil Prakash. Synthesis, antimalarial-, and antibacterial activity evaluation of some new 4-aminoquinoline derivatives. Medicinal Chemistry Research 2013, 22 (8) , 3703-3711. https://doi.org/10.1007/s00044-012-0371-9
    72. Samkele Nsumiwa, David Kuter, Sergio Wittlin, Kelly Chibale, Timothy J. Egan. Structure–activity relationships for ferriprotoporphyrin IX association and β-hematin inhibition by 4-aminoquinolines using experimental and ab initio methods. Bioorganic & Medicinal Chemistry 2013, 21 (13) , 3738-3748. https://doi.org/10.1016/j.bmc.2013.04.040
    73. Timothy J Egan, David Kuter. Dual-Functioning Antimalarials that Inhibit the Chloroquine-Resistance Transporter. Future Microbiology 2013, 8 (4) , 475-489. https://doi.org/10.2217/fmb.13.18
    74. Adele M. Lehane, Christopher A. McDevitt, Kiaran Kirk, David A. Fidock. Degrees of chloroquine resistance in Plasmodium – Is the redox system involved?. International Journal for Parasitology: Drugs and Drug Resistance 2012, 2 , 47-57. https://doi.org/10.1016/j.ijpddr.2011.11.001
    75. Rebecca D. Sandlin, Holly M. Carrell, David W. Wright. Hemozoin: Crystal Engineering Survivability. 2012https://doi.org/10.1002/9781119951438.eibc2065
    76. D. Scott Bohle, Erin L. Dodd, Peter W. Stephens. Structure of Malaria Pigment and Related Propanoate‐Linked Metalloporphyrin Dimers. Chemistry & Biodiversity 2012, 9 (9) , 1891-1902. https://doi.org/10.1002/cbdv.201200033
    77. Robert L. Summers, Megan N. Nash, Rowena E. Martin. Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. Cellular and Molecular Life Sciences 2012, 69 (12) , 1967-1995. https://doi.org/10.1007/s00018-011-0906-0
    78. Kamaljit Singh, Hardeep Kaur, Kelly Chibale, Jan Balzarini, Susan Little, Prasad V. Bharatam. 2-Aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure–activity relationship and mode of action studies. European Journal of Medicinal Chemistry 2012, 52 , 82-97. https://doi.org/10.1016/j.ejmech.2012.03.007
    79. Christoph Herrmann, Paloma F. Salas, Brian O. Patrick, Carmen de Kock, Peter J. Smith, Michael J. Adam, Chris Orvig. 1,2-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents. Dalton Transactions 2012, 41 (21) , 6431. https://doi.org/10.1039/c2dt12050j
    80. Mehdi Asghari-Khiavi, Jitraporn Vongsvivut, Inna Perepichka, Adam Mechler, Bayden R. Wood, Don McNaughton, D. Scott Bohle. Interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX, a solid state spectroscopy study. Journal of Inorganic Biochemistry 2011, 105 (12) , 1662-1669. https://doi.org/10.1016/j.jinorgbio.2011.08.005
    81. Matthew D Lewis, Johannes Pfeil, Ann-Kristin Mueller. Continuous oral chloroquine as a novel route for Plasmodium prophylaxis and cure in experimental murine models. BMC Research Notes 2011, 4 (1) https://doi.org/10.1186/1756-0500-4-262
    82. E. Paige Stout, Serena Cervantes, Jacques Prudhomme, Stefan France, James J. La Clair, Karine Le Roch, Julia Kubanek. Bromophycolide A Targets Heme Crystallization in the Human Malaria Parasite Plasmodium falciparum. ChemMedChem 2011, 6 (9) , 1572-1577. https://doi.org/10.1002/cmdc.201100252
    83. Uday Bandyopadhyay, Sumanta Dey. Antimalarial Drugs and Molecules Inhibiting Hemozoin Formation. 2011, 205-234. https://doi.org/10.1002/9783527633883.ch11
    84. Paul M. O’Neill, Victoria E. Barton, Stephen A. Ward, James Chadwick. 4-Aminoquinolines: Chloroquine, Amodiaquine and Next-Generation Analogues. 2011, 19-44. https://doi.org/10.1007/978-3-0346-0480-2_2
    85. V.R. Solomon, W. Haq, M. Smilkstein, Kumkum Srivastava, Sunil K. Puri, S.B. Katti. 4-Aminoquinoline derived antimalarials: Synthesis, antiplasmodial activity and heme polymerization inhibition studies. European Journal of Medicinal Chemistry 2010, 45 (11) , 4990-4996. https://doi.org/10.1016/j.ejmech.2010.07.068
    86. Peter Mangwala Kimpende, Luc Van Meervelt. Redetermination of bis{(1 S ,2 S ,4 S ,5 R )-2-[( R )-hydroxy(6-methoxy-4-quinolyl)methyl]-5-vinylquinuclidinium} sulfate dihydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66 (9) , o2443-o2444. https://doi.org/10.1107/S1600536810034288
    87. Cecilia P. Sanchez, Anurag Dave, Wilfred D. Stein, Michael Lanzer. Transporters as mediators of drug resistance in Plasmodium falciparum. International Journal for Parasitology 2010, 40 (10) , 1109-1118. https://doi.org/10.1016/j.ijpara.2010.04.001
    88. Adele M. Lehane, Kiaran Kirk. Efflux of a range of antimalarial drugs and ‘chloroquine resistance reversers’ from the digestive vacuole in malaria parasites with mutant PfCRT. Molecular Microbiology 2010, 77 (4) , 1039-1051. https://doi.org/10.1111/j.1365-2958.2010.07272.x
    89. Christophe Biot, Daniel Dive. Bioorganometallic Chemistry and Malaria. 2010, 155-193. https://doi.org/10.1007/978-3-642-13185-1_7
    90. RICK M. FAIRHURST, THOMAS E. WELLEMS. Plasmodium Species (Malaria). 2010, 3437-3462. https://doi.org/10.1016/B978-0-443-06839-3.00275-7
    91. Sunny Manohar, Shabana I. Khan, Diwan S. Rawat. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline–triazine conjugates. Bioorganic & Medicinal Chemistry Letters 2010, 20 (1) , 322-325. https://doi.org/10.1016/j.bmcl.2009.10.106
    92. Athar Alam, Manish Goyal, Mohd Shameel Iqbal, Chinmay Pal, Sumanta Dey, Samik Bindu, Pallab Maity, Uday Bandyopadhyay. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Review of Clinical Pharmacology 2009, 2 (5) , 469-489. https://doi.org/10.1586/ecp.09.28
    93. Katherine A. De Villiers, Timothy J. Egan. Recent Advances in the Discovery of Haem-Targeting Drugs for Malaria and Schistosomiasis. Molecules 2009, 14 (8) , 2868-2887. https://doi.org/10.3390/molecules14082868
    94. Juliana B. R. Corrêa Soares, Diego Menezes, Marcos A. Vannier-Santos, Antonio Ferreira-Pereira, Giulliana T. Almeida, Thiago M. Venancio, Sergio Verjovski-Almeida, Vincent K. Zishiri, David Kuter, Roger Hunter, Timothy J. Egan, Marcus F. Oliveira, . Interference with Hemozoin Formation Represents an Important Mechanism of Schistosomicidal Action of Antimalarial Quinoline Methanols. PLoS Neglected Tropical Diseases 2009, 3 (7) , e477. https://doi.org/10.1371/journal.pntd.0000477
    95. Christophe Biot, Natascha Chavain, Faustine Dubar, Bruno Pradines, Xavier Trivelli, Jacques Brocard, Isabelle Forfar, Daniel Dive. Structure–activity relationships of 4-N-substituted ferroquine analogues: Time to re-evaluate the mechanism of action of ferroquine. Journal of Organometallic Chemistry 2009, 694 (6) , 845-854. https://doi.org/10.1016/j.jorganchem.2008.09.033
    96. Miriam Martins Alho, Rory N. García‐Sánchez, Juan José Nogal‐Ruiz, José Antonio Escario, Alicia Gómez‐Barrio, Antonio R. Martínez‐Fernández, Vicente J. Arán. Synthesis and Evaluation of 1,1′‐Hydrocarbylenebis(indazol‐3‐ols) as Potential Antimalarial Drugs. ChemMedChem 2009, 4 (1) , 78-87. https://doi.org/10.1002/cmdc.200800176
    97. Myaing Nyunt, Christopher V. Plowe. MALARIA. 2009, 1141-1170. https://doi.org/10.1016/B978-1-4160-3291-5.50086-X
    98. Nicholas J. White. Malaria. 2009, 1201-1300. https://doi.org/10.1016/B978-1-4160-4470-3.50077-X
    99. Katherine A. de Villiers, Helder M. Marques, Timothy J. Egan. The crystal structure of halofantrine–ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. Journal of Inorganic Biochemistry 2008, 102 (8) , 1660-1667. https://doi.org/10.1016/j.jinorgbio.2008.04.001
    100. Abdul R. Bhat, Fareeda Athar, Robyn L. Van Zyl, Chien‐Teng Chen, Amir Azam. Synthesis and Biological Evaluation of Novel 4‐Substituted 1‐{[4‐(10,15,20‐Triphenylporphyrin‐5‐yl)phenyl]methylidene}thiosemicarbazides as New Class of Potential Antiprotozoal Agents. Chemistry & Biodiversity 2008, 5 (5) , 764-776. https://doi.org/10.1002/cbdv.200890073
    Load more citations

    Biochemistry

    Cite this: Biochemistry 1980, 19, 8, 1543–1549
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00549a600
    Published April 15, 1980

    Article Views

    409

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.