Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/136481a4e2d0dad726ab900950b4c201.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<c60 and single-walled carbon nanotubes chemical reviews> <link rel="stylesheet" type="text/css" href="/wro/d1325e69bfb1d3a976633a1bafe514da7512cdce~article-metrics.css"> <link rel="stylesheet" type="text/css" href="/wro/d1325e69bfb1d3a976633a1bafe514da7512cdce~product.css"> <link rel="stylesheet" href="/products/achs/releasedAssets/css/build-63914094b17be48af1a1.css"> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/"><meta name="dc.Title" content="Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes"><meta name="dc.Creator" content="Xin Lu*,† and"><meta name="dc.Creator" content="Zhongfang Chen*,‡"><meta name="dc.Publisher" content=" American Chemical Society "><meta name="dc.Date" scheme="WTN8601" content="September 29, 2005"><meta name="dc.Type" content="research-article"><meta name="dc.Format" content="text/HTML"><meta name="dc.Identifier" scheme="doi" content="10.1021/cr030093d"><meta name="dc.Identifier" scheme="crossover-key" content="CHREAy-105-10-3643"><meta name="dc.Identifier" scheme="pii" content="S0009-2665(03)00093-1"><meta name="dc.Language" content="en"><meta name="dc.Coverage" content="world"><meta name="dc.Rights" content="Copyright © 2005 American Chemical Society"> <link rel="meta" type="application/atom+xml" href="https://doi.org/10.1021%2Fcr030093d"> <link rel="meta" type="application/rdf+json" href="https://doi.org/10.1021%2Fcr030093d"> <link rel="meta" type="application/unixref+xml" href="https://doi.org/10.1021%2Fcr030093d"> <meta name="robots" content="noarchive"> <meta name="publication_doi" content="10.1021/cr030093d"> <meta property="og:url" content="https://pubs.acs.org/doi/abs/10.1021/cr030093d"><meta property="og:title" content="Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes"><meta property="og:image" content="https://pubs.acs.org/pb-assets/images/CoverImages_2by1Scaled/chreay-1595795894810.png"><meta property="og:description" content=""><meta property="og:type" content="Article"><meta property="og:site_name" content="ACS Publications"><meta name="twitter:card" content="summary_large_image"><meta name="twitter:site" content="@ACSPublications"><meta name="twitter:image" content="https://pubs.acs.org/pb-assets/images/CoverImages_2by1Scaled/chreay-1595795894810.png"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=10, user-scalable=1"> <meta name="dc.Identifier" scheme="doi" content="10.1021/cr030093d"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <link rel="stylesheet" type="text/css" href="/pb-assets/styles/achs-1741976108227.css"> <link rel="stylesheet" type="text/css" href="/pb-assets/styles/acs-1721719115433.css"> <script type="text/javascript" src="/templates/jsp/js/jquery-3.1.1.min.js" nonce="98c3b60c9bd94bd8-SJC"></script> <script type="text/javascript" src="/pb-assets/javascript/eloqua-1619549134767.js" nonce="98c3b60c9bd94bd8-SJC"></script> <script defer src="https://static.cloudflareinsights.com/beacon.min.js" data-cf-beacon='{"rayId":"5200035e6e4d5180","startTime":1570117212010}' nonce="98c3b60c9bd94bd8-SJC"></script> <script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"7224ce26191e6f50","token":"0562ec7bcba14d1cae3543aa43d6e749","version":"2022.6.0","si":100}' crossorigin="anonymous" nonce="98c3b60c9bd94bd8-SJC"></script> <!-- ACHS-7903: Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-Q72ZQB7GTR" nonce="98c3b60c9bd94bd8-SJC"></script> <script nonce="98c3b60c9bd94bd8-SJC"> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-Q72ZQB7GTR'); </script> <!-- ACHS-9596 --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-XP5JV6H8Q6" nonce="98c3b60c9bd94bd8-SJC"></script> <script nonce="98c3b60c9bd94bd8-SJC"> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-XP5JV6H8Q6'); </script> <link rel="canonical" href="https://pubs.acs.org/doi/10.1021/cr030093d"> <!-- loading Javascript for using the persistence Service --> <script src="/wro/d1325e69bfb1d3a976633a1bafe514da7512cdce~thiss-ds.js" async nonce="98c3b60c9bd94bd8-SJC"></script> <script type="text/javascript" nonce="98c3b60c9bd94bd8-SJC"> var SeamlessAccessService = { spUrl: "/action/ssostart", returnURL: window.location.href, my_context: 'seamlessaccess.org', timeout: 5000, _persistenceService: null, _getPersistenceService: function () { if (!this._persistenceService) { this._persistenceService = new thiss.PersistenceService('https://service.seamlessaccess.org/ps/'); } return this._persistenceService; }, getWAYFLessUrl: function (entityId) { return this.spUrl + "?idp=" + encodeURIComponent(entityId) + "&redirectUri=" + encodeURIComponent(this.returnURL); }, retrieveEntity: function (ms) { var self = this; var persistService = this._getPersistenceService(); if (ms == undefined || ms === '') { ms = this.timeout; } return new Promise(function (resolve, reject) { persistService.entities(self.my_context) .then(function (res) { return resolve(res.data); }, function (err) { // failed reject('failed to retrieve entity from local storage: ' + err); }); // Set up the timeout setTimeout(function () { reject('Promise timed out ' + ms + ' ms'); }, ms); }); }, updateEntity: function (entitydata) { var self = this; var persistService = this._getPersistenceService(); var jsonObj = {}; try { //try to parse it, if it is a json string jsonObj = JSON.parse(entitydata.val()); } catch (e) { jsonObj = entitydata; } return new Promise(function (resolve, reject) { persistService.update(self.my_context, jsonObj) .then(function (res) { // Process the results var ssoInstitutions = res.data; return resolve(ssoInstitutions); }, function (err) { // failed console.log('failed to update the local storage due to: ' + err); reject(err); }); }) }, removeEntity: function (entityId) { var self = this; var persistService = this._getPersistenceService(); return new Promise(function (resolve) { persistService.remove(self.my_context, entityId) .then(function (res) { return resolve(res); }, function (err) { // failed console.log('failed to remove from local storage duo to: ' + err); }); }) }, getAccessibleEntityStatus: function (doi, entityId, entityTitle) { return new Promise(function (resolve, reject) { $.ajax({ type: 'POST', url: '/action/seamlessAccess', accept: { text: "application/json" }, data: { doi: doi, entityid: entityId, entityTitle: entityTitle, eventGroupKey: '7732a04e-b86e-422b-a76a-73c4d3a01f85' } }).done(function (status) { return resolve(status); }).fail(function (status) { return reject(status); }); }); }, getEntitiesWithAllInfo: function (doi) { let self = this, arrayOfPromises = []; return new Promise(function (resolve, reject) { self.retrieveEntity().then(function (res) { let allSsoInstitutions = res; for (i = 0; i < allSsoInstitutions.length; i++) { let ssoInstitution = allSsoInstitutions[i]; arrayOfPromises.push(new Promise(function (resolve) { self.getAccessibleEntityStatus(doi, ssoInstitution.entity.entityID, ssoInstitution.entity.title) .then(function (entityStatus) { resolve({ entityID: ssoInstitution.entity.entityID, entityTitle: ssoInstitution.entity.title, entityStatusObj: entityStatus, entitySsoUrl: self.getWAYFLessUrl(ssoInstitution.entity.entityID) }); }, function (err) { console.log('failed to get the entity status: ' + ssoInstitution.entity.entityID,err); }); })); } if(allSsoInstitutions.length === 0 && true){ self.getAccessibleEntityStatus(doi, null, null) .then(function () { console.log('No Entity found'); }, function (err) { console.log('failed to get the none entity status' ,err); }); } Promise.all(arrayOfPromises) .then(function (finalResponse) { resolve(finalResponse); }).catch(function (err) { reject(err); }); }).catch(function (err) { reject(err); }) }); } }; window.addEventListener('load', function () { document.querySelectorAll(".sso-institution").forEach(function (institution) { var entityId = institution.getAttribute('data-entityid'); var entityName = institution.getAttribute('data-name'); var entitydata = { entityID: entityId, title: entityName }; institution.addEventListener("click", function (e) { e.preventDefault(); if ($('.institution-preference-userconsent-checkbox').length > 0) { let institutionPreferenceUserConsentCheckbox = $('.institution-preference-userconsent-checkbox').get(0); if (!$(institutionPreferenceUserConsentCheckbox).is(":checked")) { return; } } var self = this; SeamlessAccessService.updateEntity(entitydata).then(function (res) { console.log(res); window.location.href = self.href; }).catch(function (err) { window.location.href = self.href; }); }); }); }); </script> <script nonce="98c3b60c9bd94bd8-SJC"> (function() { function isBrowserChrome() { return /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor); } if (isBrowserChrome()) { const originTrialToken = 'AqvyZOCDq6W6Q9D+To+LSEOSztQgEaIZ1WW13TtcGHR/lf3NbAMwKFLfXztN1v4QV99Tfn7iC630Z90KBcZV9QIAAAB+eyJvcmlnaW4iOiJodHRwczovL3B1YnMuYWNzLm9yZzo0NDMiLCJmZWF0dXJlIjoiRGlzYWJsZVRoaXJkUGFydHlTdG9yYWdlUGFydGl0aW9uaW5nMyIsImV4cGlyeSI6MTc1Nzk4MDgwMCwiaXNTdWJkb21haW4iOnRydWV9'; const originTrialMetaTag = document.createElement('meta'); originTrialMetaTag.httpEquiv = 'origin-trial'; originTrialMetaTag.content = originTrialToken; document.head.append(originTrialMetaTag); } })(); </script> <meta name="google-site-verification" content="uBHpu2M2kL7VihPCSRXWyBSxooDf7L_BGgfHA3cjSfY"> <link rel="prefetch" href="https://tpc.googlesyndication.com/safeframe/1-0-29/html/container.html"> <link rel="shortcut icon" href="/pb-assets/ux3/favicon-1635812676023.ico"> <meta name="pbContext" content=";journal:journal:chreay;page:string:Article/Chapter View;ctype:string:Journal Content;subPage:string:Abstract;issue:issue:10.1021/chreay.2005.105.issue-10;wgroup:string:ACHS website Group;article:article:10.1021/cr030093d;website:website:acspubs;requestedJournal:journal:chreay;pageGroup:string:Publication Pages"> </c60>
    article

    Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    State Key Laboratory of Physical Chemistry of Solid Surfaces & Center for Theoretical Chemistry, Department of Chemistry, Xiamen University, Xiamen 361005, China, and Department of Chemistry, University of Georgia, Athens, Georgia 30602-2525
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2005, 105, 10, 3643–3696
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr030093d
    Published September 29, 2005
    Copyright © 2005 American Chemical Society
    Copyright © 2005 American Chemical Society

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  xinlu@ xmu.edu.cn; [email protected].

     Xiamen University.

     University of Georgia.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 534 publications.

    1. Shiquan Lin, Zhi-Chao Zhang, Wei-Ming Sun, Zhixun Luo. A Superatom Pt21– Cluster with Unique Stability and Aromaticity. Nano Letters 2025, 25 (29) , 11507-11512. https://doi.org/10.1021/acs.nanolett.5c03162
    2. Uttam Chowdhury, Shrabanti Mondal, Subhajit Dey, Md Habib, Ritabrata Sarkar, Shriya Gumber, Pabitra Chattopadhyay, Pranab Sarkar, Oleg Prezhdo, Sougata Pal. Hard–Soft Acid–Base Theory Explains Photoexcited Carrier Dynamics in Porphyrin/CNT Nanohybrids: Time-Domain Atomistic Analysis. Journal of the American Chemical Society 2025, 147 (24) , 20748-20758. https://doi.org/10.1021/jacs.5c04270
    3. Jia-Ming Zhang, Huai-Qian Wang, Hui-Fang Li, Xun-Jie Mei, Yong-Hang Zhang, Hao Zheng. Electronic Structure, Aromaticity, and Magnetism of Minimum-Sized Regular Dodecahedral Endohedral Metallofullerenes Encapsulating Rare Earth Atoms. ACS Omega 2024, 9 (32) , 35197-35208. https://doi.org/10.1021/acsomega.4c05912
    4. Chaonan Cui, Hanyu Zhang, Yuming Gu, Lijun Geng, Yuhan Jia, Shiquan Lin, Jing Ma, Zhixun Luo. Tailoring Titanium Carbide Clusters for New Materials: from Met-Cars to Carbon-Doped Superatoms. Journal of the American Chemical Society 2024, 146 (13) , 9302-9310. https://doi.org/10.1021/jacs.4c01068
    5. RezaeeMelorina DolafiPh.D. studentDahalBiplavPh.D. studentLiWenzhiProfessorKailash Arole, Department of Materials Science and Engineering, Texas A&M University. Single-Walled Carbon Nanotubes. 2023https://doi.org/10.1021/acsinfocus.7e7021
    6. Svyatoslav Kondrat, Guang Feng, Fernando Bresme, Michael Urbakh, Alexei A. Kornyshev. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chemical Reviews 2023, 123 (10) , 6668-6715. https://doi.org/10.1021/acs.chemrev.2c00728
    7. Rui-an Huang, Yuzhong Guo, Zhengfu Zhang, Xingshuai Zhang, Bin Yang. Insight into the Self-Assembled Three-Dimensional Sandwich-Like Hollow Silicon Nanoarray/Graphene Lithium Storage Architecture by Sonication-Assisted Functionalization. Energy & Fuels 2022, 36 (6) , 3283-3292. https://doi.org/10.1021/acs.energyfuels.1c04334
    8. Ke Zhou, Yang-Yang Zhang, Xiao-Tong Chen, Shu-Xian Hu. 12-Membered Ring Carbides with Stabilization of Actinide Atoms. Inorganic Chemistry 2022, 61 (4) , 2119-2128. https://doi.org/10.1021/acs.inorgchem.1c03341
    9. Dafa Chen, Yuhui Hua, Haiping Xia. Metallaaromatic Chemistry: History and Development. Chemical Reviews 2020, 120 (23) , 12994-13086. https://doi.org/10.1021/acs.chemrev.0c00392
    10. Jijun Zhao, Qiuying Du, Si Zhou, Vijay Kumar. Endohedrally Doped Cage Clusters. Chemical Reviews 2020, 120 (17) , 9021-9163. https://doi.org/10.1021/acs.chemrev.9b00651
    11. Markus R. P. Pielmeier, Antti J. Karttunen, Tom Nilges. Toward Atomic-Scale Inorganic Double Helices via Carbon Nanotube Matrices—Induction of Chirality to Carbon Nanotubes. The Journal of Physical Chemistry C 2020, 124 (24) , 13338-13347. https://doi.org/10.1021/acs.jpcc.0c02079
    12. Kevin Reiter, Florian Weigend, Lukas N. Wirz, Maria Dimitrova, Dage Sundholm. Magnetically Induced Current Densities in Toroidal Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (24) , 15354-15365. https://doi.org/10.1021/acs.jpcc.9b03769
    13. Tarek Trabelsi, Manoj Kumar, and Joseph S. Francisco . How Does the Central Atom Substitution Impact the Properties of a Criegee Intermediate? Insights from Multireference Calculations. Journal of the American Chemical Society 2017, 139 (43) , 15446-15449. https://doi.org/10.1021/jacs.7b08412
    14. Soheil Sadeghi, Mohammad Arjmand, Ivonne Otero Navas, Alireza Zehtab Yazdi, and Uttandaraman Sundararaj . Effect of Nanofiller Geometry on Network Formation in Polymeric Nanocomposites: Comparison of Rheological and Electrical Properties of Multiwalled Carbon Nanotube and Graphene Nanoribbon. Macromolecules 2017, 50 (10) , 3954-3967. https://doi.org/10.1021/acs.macromol.7b00702
    15. Akihiro Tsurusaki, Yu Koyama, and Soichiro Kyushin . Decasilahexahydrotriquinacene and Decasilaisotwistane: σ Conjugation on a Bowl Surface. Journal of the American Chemical Society 2017, 139 (11) , 3982-3985. https://doi.org/10.1021/jacs.7b00250
    16. Fengping Li, Wei Wei, Qilong Sun, Lin Yu, Baibiao Huang, and Ying Dai . Prediction of Single-Wall Boron Nanotube Structures and the Effects of Hydrogenation. The Journal of Physical Chemistry C 2017, 121 (10) , 5841-5847. https://doi.org/10.1021/acs.jpcc.7b00554
    17. Yuxiu Liu, Minsong Lin, and Yi Zhao . Intersystem Crossing Rates of Isolated Fullerenes: Theoretical Calculations. The Journal of Physical Chemistry A 2017, 121 (5) , 1145-1152. https://doi.org/10.1021/acs.jpca.6b12352
    18. Sarah I. Allec and Bryan M. Wong . Inconsistencies in the Electronic Properties of Phosphorene Nanotubes: New Insights from Large-Scale DFT Calculations. The Journal of Physical Chemistry Letters 2016, 7 (21) , 4340-4345. https://doi.org/10.1021/acs.jpclett.6b02271
    19. Sarah I. Allec, Niranjan V. Ilawe, and Bryan M. Wong . Unusual Bandgap Oscillations in Template-Directed π-Conjugated Porphyrin Nanotubes. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2362-2367. https://doi.org/10.1021/acs.jpclett.6b01020
    20. Guang-Wei Wang, Yong Ma, Xiu-Neng Song, Shou-Zhen Jiang, Wei-Wei Yue, Chuan-Kui Wang, and Yi Luo . Theoretical Isomer Identification of Three C56 Fullerenes and Their Chlorinated Derivatives by XPS and NEXAFS Spectra. The Journal of Physical Chemistry C 2016, 120 (25) , 13779-13786. https://doi.org/10.1021/acs.jpcc.6b01776
    21. Jerry Ray Dias . Systematic Construction and Calculation of Electronic Properties of Fullerene Series Related by Rotational Symmetry: From Fullerenes to Bicapped Nanotubes. The Journal of Physical Chemistry A 2016, 120 (22) , 3975-3982. https://doi.org/10.1021/acs.jpca.6b03897
    22. Lifeng Chen, Guicai Zhang, Jijiang Ge, Ping Jiang, Xiaoming Zhu, Yunling Ran, and Shengxia Han . Ultrastable Hydrogel for Enhanced Oil Recovery Based on Double-Groups Cross-Linking. Energy & Fuels 2015, 29 (11) , 7196-7203. https://doi.org/10.1021/acs.energyfuels.5b02124
    23. Denis Sh. Sabirov and Eiji O̅sawa . Information Entropy of Fullerenes. Journal of Chemical Information and Modeling 2015, 55 (8) , 1576-1584. https://doi.org/10.1021/acs.jcim.5b00334
    24. Lung Wa Chung, W. M. C. Sameera, Romain Ramozzi, Alister J. Page, Miho Hatanaka, Galina P. Petrova, Travis V. Harris, Xin Li, Zhuofeng Ke, Fengyi Liu, Hai-Bei Li, Lina Ding, and Keiji Morokuma . The ONIOM Method and Its Applications. Chemical Reviews 2015, 115 (12) , 5678-5796. https://doi.org/10.1021/cr5004419
    25. Liming Dai, Yuhua Xue, Liangti Qu, Hyun-Jung Choi, and Jong-Beom Baek . Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews 2015, 115 (11) , 4823-4892. https://doi.org/10.1021/cr5003563
    26. Carlos A. Jiménez-Hoyos, R. Rodríguez-Guzmán, and Gustavo E. Scuseria . Polyradical Character and Spin Frustration in Fullerene Molecules: An Ab Initio Non-Collinear Hartree–Fock Study. The Journal of Physical Chemistry A 2014, 118 (42) , 9925-9940. https://doi.org/10.1021/jp508383z
    27. D. Xanat Flores-Cervantes, Hanna M. Maes, Andreas Schäffer, Juliane Hollender, and Hans-Peter E. Kohler . Slow Biotransformation of Carbon Nanotubes by Horseradish Peroxidase. Environmental Science & Technology 2014, 48 (9) , 4826-4834. https://doi.org/10.1021/es4053279
    28. Jia Zhou, Jingsong Huang, Bobby G. Sumpter, Paul R. C. Kent, Humberto Terrones, and Sean C. Smith . Structures, Energetics, and Electronic Properties of Layered Materials and Nanotubes of Cadmium Chalcogenides. The Journal of Physical Chemistry C 2013, 117 (48) , 25817-25825. https://doi.org/10.1021/jp409772r
    29. Liu-Jiang Zhou, Yong-Fan Zhang, and Li-Ming Wu . SiC2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cells. Nano Letters 2013, 13 (11) , 5431-5436. https://doi.org/10.1021/nl403010s
    30. Debashree Manna and Tapan K. Ghanty . Enhancement in the Stability of 36-Atom Fullerene through Encapsulation of a Uranium Atom. The Journal of Physical Chemistry C 2013, 117 (34) , 17859-17869. https://doi.org/10.1021/jp406350w
    31. Xiao-Dong Wen, Tao Yang, Roald Hoffmann, N. W. Ashcroft, Richard L. Martin, Sven P. Rudin, and Jian-Xin Zhu . Graphane Nanotubes. ACS Nano 2012, 6 (8) , 7142-7150. https://doi.org/10.1021/nn302204b
    32. Irena Majerz and Teresa Dziembowska . Aromaticity of Overcrowded Nitroanilines. The Journal of Physical Chemistry A 2012, 116 (23) , 5629-5636. https://doi.org/10.1021/jp212449m
    33. Patrick S. Redmill . Estimating Octanol–Water Partition Coefficients for Selected Nanoscale Building Blocks Using the COSMO-SAC Segment Contribution Method. Industrial & Engineering Chemistry Research 2012, 51 (12) , 4556-4566. https://doi.org/10.1021/ie202107t
    34. Yafei Li and Zhongfang Chen . Patterned Partially Hydrogenated Graphene (C4H) and Its One-Dimensional Analogues: A Computational Study. The Journal of Physical Chemistry C 2012, 116 (7) , 4526-4534. https://doi.org/10.1021/jp212499h
    35. Qinghong Yuan, Hong Hu, Junfeng Gao, Feng Ding, Zhifeng Liu, and Boris I. Yakobson . Upright Standing Graphene Formation on Substrates. Journal of the American Chemical Society 2011, 133 (40) , 16072-16079. https://doi.org/10.1021/ja2037854
    36. Masatoshi Ishida, Jae-Yoon Shin, Jong Min Lim, Byung Sun Lee, Min-Chul Yoon, Taro Koide, Jonathan L. Sessler, Atsuhiro Osuka, and Dongho Kim . Neutral Radical and Singlet Biradical Forms of Meso-Free, -Keto, and -Diketo Hexaphyrins(1.1.1.1.1.1): Effects on Aromaticity and Photophysical Properties. Journal of the American Chemical Society 2011, 133 (39) , 15533-15544. https://doi.org/10.1021/ja204626t
    37. Ya Kun Chen, Lei Vincent Liu, Wei Quan Tian, and Yan Alexander Wang . Theoretical Studies of Transition-Metal-Doped Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (19) , 9306-9311. https://doi.org/10.1021/jp909490v
    38. Charles See Yeung and Yan Alexander Wang . Lewis Acidity of Pt-Doped Buckybowls, Fullerenes, and Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (15) , 7153-7163. https://doi.org/10.1021/jp108174b
    39. Qun-Hong Weng, Qiao He, Ting Liu, Hui-Ying Huang, Jian-Hua Chen, Zhi-Yong Gao, Su-Yuan Xie, Xin Lu, Rong-Bin Huang, and Lan-Sun Zheng. Simple Combustion Production and Characterization of Octahydro[60]fullerene with a Non-IPR C60 Cage. Journal of the American Chemical Society 2010, 132 (43) , 15093-15095. https://doi.org/10.1021/ja108316e
    40. Patrick S. Redmill and Clare McCabe . Molecular Dynamics Study of the Behavior of Selected Nanoscale Building Blocks in a Gel-Phase Lipid Bilayer. The Journal of Physical Chemistry B 2010, 114 (28) , 9165-9172. https://doi.org/10.1021/jp1039942
    41. S. Thomas and Y. A. Pati. A Comparative Study of Aromaticity in Substituted Tetracyclic and Hexacyclic Thiophenes. The Journal of Physical Chemistry A 2010, 114 (18) , 5940-5946. https://doi.org/10.1021/jp102065g
    42. E. Sacher. Asymmetries in Transition Metal XPS Spectra: Metal Nanoparticle Structure, and Interaction with the Graphene-Structured Substrate Surface. Langmuir 2010, 26 (6) , 3807-3814. https://doi.org/10.1021/la902678x
    43. Wai-Leung Yim and J. Karl Johnson . Ozone Oxidation of Single Walled Carbon Nanotubes from Density Functional Theory. The Journal of Physical Chemistry C 2009, 113 (41) , 17636-17642. https://doi.org/10.1021/jp908089c
    44. Wei Zhang, Johannes K. Sprafke, Minglin Ma, Emily Y. Tsui, Stefanie A. Sydlik, Gregory C. Rutledge and Timothy M. Swager. Modular Functionalization of Carbon Nanotubes and Fullerenes. Journal of the American Chemical Society 2009, 131 (24) , 8446-8454. https://doi.org/10.1021/ja810049z
    45. Yong Chen, Jun-Qian Li and Chun-Li Hu. Prediction of Chemical Anisotropy on Sidewall of Boron Nitride Nanotubes: A New Application of Directional Curvature Theory. The Journal of Physical Chemistry C 2008, 112 (48) , 18787-18792. https://doi.org/10.1021/jp805524n
    46. Yuan-Zhi Tan, Xiao Han, Xin Wu, Ye-Yong Meng, Feng Zhu, Zhuo-Zhen Qian, Zhao-Jiang Liao, Ming-Hui Chen, Xin Lu, Su-Yuan Xie, Rong-Bin Huang and Lan-Sun Zheng. An Entrant of Smaller Fullerene: C56 Captured by Chlorines and Aligned in Linear Chains. Journal of the American Chemical Society 2008, 130 (46) , 15240-15241. https://doi.org/10.1021/ja806352v
    47. Michał A. Dobrowolski, Michał K. Cyrański, Bradley L. Merner, Graham J. Bodwell, Judy I. Wu and Paul von Ragué Schleyer . Interplay of π-Electron Delocalization and Strain in [n](2,7)Pyrenophanes. The Journal of Organic Chemistry 2008, 73 (20) , 8001-8009. https://doi.org/10.1021/jo8014159
    48. K. R. S. Chandrakumar, K. Srinivasu and Swapan K. Ghosh. Nanoscale Curvature-Induced Hydrogen Adsorption in Alkali Metal Doped Carbon Nanomaterials. The Journal of Physical Chemistry C 2008, 112 (40) , 15670-15679. https://doi.org/10.1021/jp8019446
    49. Zhihui Ai, Haiyan Xiao, Tao Mei, Juan Liu, Lizhi Zhang, Kejian Deng and Jianrong Qiu. Electro-Fenton Degradation of Rhodamine B Based on a Composite Cathode of Cu2O Nanocubes and Carbon Nanotubes. The Journal of Physical Chemistry C 2008, 112 (31) , 11929-11935. https://doi.org/10.1021/jp803243t
    50. Nan Shao,, Yi Gao, and, Xiao Cheng Zeng. Search for Lowest-Energy Fullerenes 2:  C38 to C80 and C112 to C120. The Journal of Physical Chemistry C 2007, 111 (48) , 17671-17677. https://doi.org/10.1021/jp0701082
    51. Zhihui Ai,, Tao Mei,, Juan Liu,, Jinpo Li,, Falong Jia,, Lizhi Zhang, and, Jianrong Qiu. Fe@Fe2O3 Core−Shell Nanowires as an Iron Reagent. 3. Their Combination with CNTs as an Effective Oxygen-Fed Gas Diffusion Electrode in a Neutral Electro-Fenton System. The Journal of Physical Chemistry C 2007, 111 (40) , 14799-14803. https://doi.org/10.1021/jp073617c
    52. Xiaofang Li,, Louzhen Fan,, Dongfang Liu,, Herman H. Y. Sung,, Ian D. Williams,, Shihe Yang,, Kai Tan, and, Xin Lu. Synthesis of a Dy@C82 Derivative Bearing a Single Phosphorus Substituent via a Zwitterion Approach. Journal of the American Chemical Society 2007, 129 (35) , 10636-10637. https://doi.org/10.1021/ja074321n
    53. Kang Hyun Park,, Jaewon Choi,, Hae Jin Kim,, Jin Bae Lee, and, Seung Uk Son. Synthesis of Antimony Sulfide Nanotubes with Ultrathin Walls via Gradual Aspect Ratio Control of Nanoribbons. Chemistry of Materials 2007, 19 (16) , 3861-3863. https://doi.org/10.1021/cm0712772
    54. Clémence Corminboeuf,, Paul von Ragué Schleyer, and, Philip Warner. Are Antiaromatic Rings Stacked Face-to-Face Aromatic?. Organic Letters 2007, 9 (17) , 3263-3266. https://doi.org/10.1021/ol071183y
    55. Edyta Małolepsza and, Henryk A. Witek, , Stephan Irle. Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of Small Fullerenes C20−C36. The Journal of Physical Chemistry A 2007, 111 (29) , 6649-6657. https://doi.org/10.1021/jp068529r
    56. Wei Zhang and, Timothy M. Swager. Functionalization of Single-Walled Carbon Nanotubes and Fullerenes via a Dimethyl Acetylenedicarboxylate−4-Dimethylaminopyridine Zwitterion Approach. Journal of the American Chemical Society 2007, 129 (25) , 7714-7715. https://doi.org/10.1021/ja0717212
    57. Xin Wu and, Xin Lu. Dimetalloendofullerene U2@C60 Has a U−U Multiple Bond Consisting of Sixfold One-Electron-Two-Center Bonds. Journal of the American Chemical Society 2007, 129 (7) , 2171-2177. https://doi.org/10.1021/ja067281g
    58. Kuanping Gong,, Ping Yu,, Lei Su,, Shaoxiang Xiong, and, Lanqun Mao. Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen. The Journal of Physical Chemistry C 2007, 111 (5) , 1882-1887. https://doi.org/10.1021/jp0628636
    59. Guishan Zheng,, Zhi Wang,, Stephan Irle, and, Keiji Morokuma. Origin of the Linear Relationship between CH2/NH/O−SWNT Reaction Energies and Sidewall Curvature: Armchair Nanotubes. Journal of the American Chemical Society 2006, 128 (47) , 15117-15126. https://doi.org/10.1021/ja061306u
    60. Junqian Li,, Guixiao Jia,, Yongfan Zhang, and, Yong Chen. Bond-Curvature Effect of Sidewall [2+1] Cycloadditions of Single-Walled Carbon Nanotubes:  A New Criterion To the Adduct Structures. Chemistry of Materials 2006, 18 (15) , 3579-3584. https://doi.org/10.1021/cm060563v
    61. Kai Tan,, Xin Lu, and, Chun-Ru Wang. Unprecedented μ4-C26- Anion in Sc4C2@C80. The Journal of Physical Chemistry B 2006, 110 (23) , 11098-11102. https://doi.org/10.1021/jp0623995
    62. Chun-Ru Wang,, Zhi-Qiang Shi,, Li-Jun Wan,, Xin Lu,, Lothar Dunsch,, Chun-Ying Shu,, Ya-Lin Tang, and, Hisanori Shinohara. C64H4:  Production, Isolation, and Structural Characterizations of a Stable Unconventional Fulleride. Journal of the American Chemical Society 2006, 128 (20) , 6605-6610. https://doi.org/10.1021/ja0567844
    63. Fengyi Liu,, Lingpeng Meng, and, Shijun Zheng. Small Fullerenes with BN Belts:  A Density Functional Theory Investigation. The Journal of Physical Chemistry B 2006, 110 (13) , 6666-6672. https://doi.org/10.1021/jp057350y
    64. Dimitrios Tasis,, Nikos Tagmatarchis,, Alberto Bianco, and, Maurizio Prato. Chemistry of Carbon Nanotubes. Chemical Reviews 2006, 106 (3) , 1105-1136. https://doi.org/10.1021/cr050569o
    65. Zhongfang Chen and, R. Bruce King. Spherical Aromaticity:  Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. Chemical Reviews 2005, 105 (10) , 3613-3642. https://doi.org/10.1021/cr0300892
    66. Anhar A. Oda, Alaa A. Al-Jobory, Sameer Nawaf, Nabeel F. Lattoofi, Moaaed Motlak, Ali Ismael. Electrode variability and its impact on the characteristics of M@C80 molecular junctions (M = P, S, As, Se). Materials Science in Semiconductor Processing 2025, 199 , 109822. https://doi.org/10.1016/j.mssp.2025.109822
    67. Kamal Kishore, M. Neaz Sheikh, Muhammad N.S. Hadi. Functionalization of carbon nanotubes for enhanced dispersion and improved properties of geopolymer concrete: A review. Journal of Building Engineering 2025, 111 , 113096. https://doi.org/10.1016/j.jobe.2025.113096
    68. Venkatraman Hegde, Raveendra Bhat, Vandna Sharma, Vinayak Adimule, Rangappa Keri, Pankaj Kumar, Sunitha D V, Gangadhar V. Muddapur, Santosh Nandi. Structural characterization of photoluminescent, light-driven fluorescence and phosphorescence decay properties of new azobenzene dyes containing alkoxy side chain and their DFT studies. Journal of Molecular Structure 2025, 1336 , 142092. https://doi.org/10.1016/j.molstruc.2025.142092
    69. Zi‐Yang Qiu, Wei‐Wei Wang, Qi Yang, Jia‐Jia Zheng, Xiang Zhao, Jing‐Shuang Dang. Machine Learning Interatomic Potential‐Enabled Discovery of Chlorofullerenes. Chemistry – A European Journal 2025, 31 (40) https://doi.org/10.1002/chem.202501632
    70. Silvana Alfei, Guendalina Zuccari. Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects. Journal of Xenobiotics 2025, 15 (3) , 76. https://doi.org/10.3390/jox15030076
    71. Kim Q. Tran, Thoi V. Duong, Tien-Dat Hoang, Magd Abdel Wahab, Klaus Hackl, H. Nguyen-Xuan. A new thermoelastic model for agglomerated and randomly-oriented CNT-reinforced bio-inspired materials: Temperature-dependent free vibration analysis of FG-CNTR-TPMS plates. Engineering Analysis with Boundary Elements 2025, 174 , 106157. https://doi.org/10.1016/j.enganabound.2025.106157
    72. Mamata Dhayal, Shaily Sharma, Prakash Jakhar, Yashpal Sain, Himanshu Sharma. Carbon-Supported Photocatalysts: A Sustainable Approach for Enhanced Environmental Remediation. Comments on Inorganic Chemistry 2025, , 1-55. https://doi.org/10.1080/02603594.2025.2494273
    73. Silvana Alfei, Gian Carlo Schito. Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues. Nanomaterials 2025, 15 (8) , 633. https://doi.org/10.3390/nano15080633
    74. Mohamad Nurul Azman Mohammad Taib, Nur Farahah Mohd Khairuddin, Tawfik A. Saleh. Functionalized carbon nanotubes: synthesis, properties, and application in polymer for flame retardancy—a review. Journal of Thermal Analysis and Calorimetry 2025, 150 (5) , 3067-3089. https://doi.org/10.1007/s10973-025-14016-y
    75. Vinayak Adimule, Rangappa Keri, Vandna Sharma, Pankaj Kumar, Kalpana Sharma, Santosh Nandi, Santosh Khatavi. Investigation of non-linear optical and photophysical properties of fullerene decorated photochromic liquid crystals. Journal of Solid State Chemistry 2025, 343 , 125151. https://doi.org/10.1016/j.jssc.2024.125151
    76. Zirui Qiao, Huaqiang Cao, Jiadao Wang, Haijun Yang, Wenqing Yao, Jiaou Wang, Anthony K. Cheetham. Curvature‐Induced Electron Spin Catalysis with Carbon Spheres. Angewandte Chemie 2025, 137 (1) https://doi.org/10.1002/ange.202412745
    77. Zirui Qiao, Huaqiang Cao, Jiadao Wang, Haijun Yang, Wenqing Yao, Jiaou Wang, Anthony K. Cheetham. Curvature‐Induced Electron Spin Catalysis with Carbon Spheres. Angewandte Chemie International Edition 2025, 64 (1) https://doi.org/10.1002/anie.202412745
    78. Weiguo Sun, Dexin Mu, Xiaofeng Li, Simin Li, Feng Peng. Superconductivity induced by element doping in C 48 fullerene at ambient pressure. Physical Chemistry Chemical Physics 2025, 12 https://doi.org/10.1039/D5CP03360H
    79. Yipu Wang, Jianyu Zhang, Qingyang Xu, Weihao Tu, Lei Wang, Yuan Xie, Jing Zhi Sun, Feihe Huang, Haoke Zhang, Ben Zhong Tang. Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50815-x
    80. Yanlin Pan, Dominika Baster, Daniel Käch, Jan Reger, Lionel Wettstein, Frank Krumeich, Mario El Kazzi, Máté J. Bezdek. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angewandte Chemie 2024, 136 (46) https://doi.org/10.1002/ange.202412084
    81. Yanlin Pan, Dominika Baster, Daniel Käch, Jan Reger, Lionel Wettstein, Frank Krumeich, Mario El Kazzi, Máté J. Bezdek. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angewandte Chemie International Edition 2024, 63 (46) https://doi.org/10.1002/anie.202412084
    82. Bun Chan, Amir Karton. The Bond Energy of the Carbon Skeleton in Polyaromatic Halohydrocarbon Molecules. ChemPhysChem 2024, 25 (21) https://doi.org/10.1002/cphc.202400234
    83. Mattias Mases, Daniel Jacobsson, David Wahlqvist, Martin Ek, Henrik Wiinikka. The oxidation of carbon nanostructures imaged by electron microscopy: Comparison between in-situ TEM and TGA experiments. Applied Surface Science 2024, 672 , 160755. https://doi.org/10.1016/j.apsusc.2024.160755
    84. Yuto Kondo, Yusuke Tsutsui, Yusuke Matsuo, Takayuki Tanaka, Shu Seki. Impacts of heteroatom substitution on the excited state dynamics of π-extended helicenes. Nanoscale Advances 2024, 6 (18) , 4567-4571. https://doi.org/10.1039/D4NA00516C
    85. Ksenia Kharisova, Daniil Lukyanov, Petr Korusenko, Evgenii Beletskii, Anatoliy Vereshchagin, Oleg Levin, Ruopeng Li, Peixia Yang, Elena Alekseeva. Synthesis, properties and applications of carbon nanomaterials functionalized with anionic groups. Nano-Structures & Nano-Objects 2024, 39 , 101258. https://doi.org/10.1016/j.nanoso.2024.101258
    86. Henryk A. Witek, Rafał Podeszwa. Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70. Molecules 2024, 29 (17) , 4013. https://doi.org/10.3390/molecules29174013
    87. Alexander S. Sinitsa, Yulia G. Polynskaya, Nikita A. Matsokin, Yegor M. Kedalo, Andrey A. Knizhnik, Andrey M. Popov. Formation of the icosahedral C 60 fullerene via migration of single sp atoms and annihilation of sp-atom pairs. Physical Chemistry Chemical Physics 2024, 26 (32) , 21905-21911. https://doi.org/10.1039/D4CP02490G
    88. D. Sh. Sabirov, A. A. Tukhbatullina, A. D. Zimina, I. S. Shepelevich. Informatics of chemical reactions: information entropy as the descriptor of changes in molecular complexity. Russian Chemical Bulletin 2024, 73 (8) , 2123-2143. https://doi.org/10.1007/s11172-024-4335-2
    89. P. M. Korusenko, E. V. Beletskii, O. V. Levin, K. A. Kharisova, D. A. Luk’yanov, A. A. Vereshchagin, E. V. Alekseeva. Ion Beam and Plasma Modification of Carbon Nanomaterials for Electrochemical Applications. Inorganic Materials 2024, 60 (8) , 939-959. https://doi.org/10.1134/S0020168524701231
    90. Jordan Burkhardt, Hayden Prescott, Wan-Lu Li. Metalloborospherene Analogs to Metallofullerene. Inorganics 2024, 12 (7) , 193. https://doi.org/10.3390/inorganics12070193
    91. S. Idrissi, A. Jabar, L. Bahmad. Magnetic and Magnetocaloric Properties of C 56 like-Fullerene Structure: A Monte Carlo Study. ECS Journal of Solid State Science and Technology 2024, 13 (6) , 061002. https://doi.org/10.1149/2162-8777/ad522d
    92. Kunal Kulkarni, Yashodhan Moghe, Anish Tangadpalliwar, Jupinder Kaur, Rajan Vohra. A review on the smallest carbon fullerene C20: Applications and device formation. Materials Today: Proceedings 2024, 23 https://doi.org/10.1016/j.matpr.2024.05.147
    93. Xinxin Zhang, Jiaming Tian, Yu Wang, Shaohua Guo, Yafei Li. C60 as a metal-free catalyst for lithium-oxygen batteries. Nano Research 2024, 17 (5) , 3982-3987. https://doi.org/10.1007/s12274-023-6306-6
    94. Zhixun Luo, Shiquan Lin. Advances in cluster superatoms for a 3D periodic table of elements. Coordination Chemistry Reviews 2024, 500 , 215505. https://doi.org/10.1016/j.ccr.2023.215505
    95. Anirudh Pratap Singh Raman, Sandeep Yadav Madhur Babu Singh, Indra Bahadur, Nagendra Kumar Kaushik, Prashant Singh, Kamlesh Kumari. Carbon Nanotubes and Its Composites in Sensing of Drugs and Pesticides. 2024, 267-284. https://doi.org/10.1007/978-3-031-62620-3_24
    96. Amir Karton. Graphene Catalysis Made Easy. 2024, 580-593. https://doi.org/10.1016/B978-0-12-821978-2.00083-0
    97. Pengcheng Ding, Shaoshan Wang, Cristina Mattioli, Zhuo Li, Guoqiang Shi, Ye Sun, André Gourdon, Lev Kantorovich, Flemming Besenbacher, Federico Rosei, Miao Yu. Extending on-surface synthesis from 2D to 3D by cycloaddition with C60. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41913-3
    98. Haeji Kim, Jun Young Cheong, Byungil Hwang. Mini Review of Technological Trends of Flexible Supercapacitors Using Carbon Nanotubes. Journal of Natural Fibers 2023, 20 (2) https://doi.org/10.1080/15440478.2023.2204455
    99. Desmond MacLeod-Carey, Peter L. Rodríguez-Kessler, Alvaro Muñoz-Castro. Cl@Si 20 X 20 cages: evaluation of encapsulation nature, structural rigidity, and 29 Si-NMR patterns using relativistic DFT calculations. Physical Chemistry Chemical Physics 2023, 25 (29) , 19845-19852. https://doi.org/10.1039/D3CP02371K
    100. Abdullah Abdulhameed, Mohd Mahadi Halim. Electrical and thermal conductivity enrichment by carbon nanotubes: a mini-review. Emergent Materials 2023, 6 (3) , 841-852. https://doi.org/10.1007/s42247-023-00499-8
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 2005, 105, 10, 3643–3696
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr030093d
    Published September 29, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    8734

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.