Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/af3e8e81dbaae4303f980c93463739c7.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
The ECW Model | Journal of Chemical Education
    Article

    The ECW Model
    Click to copy article linkArticle link copied!

    View Author Information
    Ithaca College, Ithaca, NY 14850
    University of Florida, Gainesville, FL 32611
    Other Access Options

    Journal of Chemical Education

    Cite this: J. Chem. Educ. 1996, 73, 8, 701
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ed073p701
    Published August 1, 1996

    Abstract

    Click to copy section linkSection link copied!

    The ECW model is a powerful tool for developing an understanding of donor-acceptor interactions. Most modern inorganic chemistry textbooks discuss the model's ability to correlate and predict enthalpies of adduct formation but overlook the application of the E and C parameters as a scale to analyze reactivity and spectroscopy. Furthermore, a survey of these textbooks indicate the authors are using parameters of different vintages. This article provides the teacher with the latest parameters as well as an update of the traditional uses of the ECW model and a discussion of some of the more important, often overlooked, applications of the model.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Yike Ye, Qian Wu, Zhichuan J. Xu. Minireview on Decoding Electrocatalytic CO2 Reduction via Lewis Acid–Base Chemistry: Advances and Outlook. Energy & Fuels 2025, 39 (37) , 17763-17778. https://doi.org/10.1021/acs.energyfuels.5c03374
    2. Francis McCallum, Md. Daloar Hossain, Idriss Blakey, Hui Peng, Andrew K. Whittaker. Revealing the Chemical Interactions between PMMA and TMA for Insights into Sequential Infiltration Synthesis. Macromolecules 2024, 57 (18) , 8722-8733. https://doi.org/10.1021/acs.macromol.4c01345
    3. T. Keller, N. H. Nickel, J. Rappich. Competition of Iodide/Bromide Ions in the Formation of Methylammonium Lead Halide in Different Solvents. The Journal of Physical Chemistry C 2022, 126 (41) , 17656-17662. https://doi.org/10.1021/acs.jpcc.2c03740
    4. Sukhwinder Singh, Jyotirmoy Deb, Suresh Kumar, Utpal Sarkar, Sandeep Sharma. Selective N,N-Dimethylformamide Vapor Sensing Using MoSe2/Multiwalled Carbon Nanotube Composites at Room Temperature. ACS Applied Nano Materials 2022, 5 (3) , 3913-3924. https://doi.org/10.1021/acsanm.1c04505
    5. Lily Southcott, Xiaozhu Wang, Neha Choudhary, Luke Wharton, Brian O. Patrick, Hua Yang, Kristof Zarschler, Manja Kubeil, Holger Stephan, María de Guadalupe Jaraquemada-Peláez, Chris Orvig. H2pyhox – Octadentate Bis(pyridyloxine). Inorganic Chemistry 2021, 60 (16) , 12186-12196. https://doi.org/10.1021/acs.inorgchem.1c01412
    6. Michael C. Wilson, Saranshu Singla, Amanda J. Stefin, Sukhmanjot Kaur, Jared V. Brown, Ali Dhinojwala. Characterization of Acid–Base Interactions Using Interface-Sensitive Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (30) , 18495-18501. https://doi.org/10.1021/acs.jpcc.9b06266
    7. Paweł Szarek, Marcin Witkowski, Aleksander P. Woźniak. Unconventional Look at the Diameters of Quantum Systems: Could the Characteristic Atomic Radius Be Interpreted as a Reactivity Measure?. The Journal of Physical Chemistry C 2019, 123 (18) , 11572-11580. https://doi.org/10.1021/acs.jpcc.9b00221
    8. Carl J. Tilbury, Daniel A. Green, William J. Marshall, and Michael F. Doherty . Predicting the Effect of Solvent on the Crystal Habit of Small Organic Molecules. Crystal Growth & Design 2016, 16 (5) , 2590-2604. https://doi.org/10.1021/acs.cgd.5b01660
    9. Gopaladasu T. Venkanna, Hadi D. Arman, and Zachary J. Tonzetich . Catalytic C–S Cross-Coupling Reactions Employing Ni Complexes of Pyrrole-Based Pincer Ligands. ACS Catalysis 2014, 4 (9) , 2941-2950. https://doi.org/10.1021/cs500874z
    10. Svetlana S. Kostina, Tishaan Singh, and William J. Leigh . Electronic and Steric Effects on the Lewis Acidities of Transient Silylenes and Germylenes: Equilibrium Constants for Complexation with Chalcogen and Pnictogen Donors. Organometallics 2012, 31 (9) , 3755-3767. https://doi.org/10.1021/om3002558
    11. S. Masoud Nabavizadeh and, Mehdi Rashidi. Lewis Acidity of Methyltrioxorhenium(VII) (MTO) Based on the Relative Binding Strengths of N-Donors. Journal of the American Chemical Society 2006, 128 (1) , 351-357. https://doi.org/10.1021/ja056505c
    12. Vânia S. F. Muralha,, Rui M. Borges dos Santos, and, José A. Martinho Simões. Energetics of Alkylbenzyl Radicals:  A Time-Resolved Photoacoustic Calorimetry Study. The Journal of Physical Chemistry A 2004, 108 (6) , 936-942. https://doi.org/10.1021/jp036293a
    13. R. C. Guedes,, Kaline Coutinho,, B. J. Costa Cabral,, Sylvio Canuto,, C. F. Correia,, R. M. Borges dos Santos, and, J. A. Martinho Simões. Solvent Effects on the Energetics of the Phenol O−H Bond:  Differential Solvation of Phenol and Phenoxy Radical in Benzene and Acetonitrile. The Journal of Physical Chemistry A 2003, 107 (43) , 9197-9207. https://doi.org/10.1021/jp035912c
    14. María D. Alba,, Ana I. Becerro,, Miguel A. Castro,, Ana C. Perdigón, and, José M. Trillo. Inherent Acidity of Aqua Metal Ions in Solids:  An Assay in Layered Aluminosilicates. The Journal of Physical Chemistry B 2003, 107 (17) , 3996-4001. https://doi.org/10.1021/jp026344o
    15. Rui M. Borges dos Santos,, Vânia S. F. Muralha,, Catarina F. Correia,, Rita C. Guedes,, Benedito J. Costa Cabral, and, José A. Martinho Simões. S−H Bond Dissociation Enthalpies in Thiophenols:  A Time-Resolved Photoacoustic Calorimetry and Quantum Chemistry Study. The Journal of Physical Chemistry A 2002, 106 (42) , 9883-9889. https://doi.org/10.1021/jp025677i
    16. Rui M. Borges dos Santos,, Vânia S. F. Muralha,, Catarina F. Correia, and, José A. Martinho Simões. Solvation Enthalpies of Free Radicals:  O−O Bond Strength in Di-tert-butylperoxide. Journal of the American Chemical Society 2001, 123 (50) , 12670-12674. https://doi.org/10.1021/ja010703w
    17. Song Jin,, Ran Zhou,, Ellen M. Scheuer,, Jennifer Adamchuk,, Lori L. Rayburn, and, Francis J. DiSalvo. Synthesis, Characterization, and Ligand Exchange Studies of W6S8L6 Cluster Compounds. Inorganic Chemistry 2001, 40 (12) , 2666-2674. https://doi.org/10.1021/ic001314q
    18. Catherine Bergquist,, Hannah Storrie,, Lawrence Koutcher,, Brian M. Bridgewater,, Richard A. Friesner, and, Gerard Parkin. Factors Influencing the Thermodynamics of Zinc Alkoxide Formation by Alcoholysis of the Terminal Hydroxide Complex, [TpBut,Me]ZnOH:  An Experimental and Theoretical Study Relevant to the Mechanism of Action of Liver Alcohol Dehydrogenase. Journal of the American Chemical Society 2000, 122 (51) , 12651-12658. https://doi.org/10.1021/ja002286d
    19. Alexey Y. Timoshkin,, Andrew V. Suvorov,, Holger F. Bettinger, and, Henry F. Schaefer III. Role of the Terminal Atoms in the Donor−Acceptor Complexes MX3−D (M = Al, Ga, In; X = F, Cl, Br, I; D = YH3, YX3, X-; Y = N, P, As). Journal of the American Chemical Society 1999, 121 (24) , 5687-5699. https://doi.org/10.1021/ja983408t
    20. Daniel González‐Pinardo, Israel Fernández. π‐Conjugation as a Direct Estimate of Lewis Acidity. Chemistry – An Asian Journal 2025, 20 (3) https://doi.org/10.1002/asia.202401212
    21. Д. А. Дойников, А. С. Завгородний, А. Ю. Тимошкин. Оценка энергий диссоциации донорно-акцепторных комплексов соединений элементов 13–15 групп в рамках статистической EC-модели. Журнал физической химии 2024, 98 (4) , 54-63. https://doi.org/10.31857/S0044453724040076
    22. Ranita Pal, Himangshu Mondal, Pratim K. Chattaraj. Acidity and Basicity. 2024, 251-284. https://doi.org/10.1002/9783527843435.ch10
    23. Boris N. Solomonov, Mansur B. Khisamiev, Mikhail I. Yagofarov. Calculation of the formation enthalpies of charge-transfer complexes with iodine from the binding constants at 298.15 K. Journal of Molecular Liquids 2024, 411 , 125690. https://doi.org/10.1016/j.molliq.2024.125690
    24. Boris N. Solomonov, Mansur B. Khisamiev, Mikhail I. Yagofarov. Calculation of Hydrogen Bonding Enthalpy Using the Two-Parameter Abraham Equation. Liquids 2024, 4 (3) , 624-631. https://doi.org/10.3390/liquids4030034
    25. Mrinal Sarkar. The Drago–Wayland Equation. Resonance 2024, 29 (4) , 503-515. https://doi.org/10.1007/s12045-024-0503-9
    26. D. A. Doinikov, A. S. Zavgorodnii, A. Yu. Timoshkin. Estimation of the Dissociation Energies of Donor–Acceptor Complexes of Group 13–15 Element Compounds within the Framework of the Statistical EC Model. Russian Journal of Physical Chemistry A 2024, 98 (4) , 601-608. https://doi.org/10.1134/S003602442404006X
    27. Dean J. Tantillo, Jeffrey I. Seeman. On a unified theory of acids and bases: Hasok Chang, Eric R. Scerri, modern theoretical chemistry, and the philosophy of chemistry. Foundations of Chemistry 2023, 25 (2) , 299-320. https://doi.org/10.1007/s10698-022-09456-5
    28. Nitesh Dogra, Sandeep Sharma. Selective room-temperature dimethylformamide vapor sensing using MoSe2-rGO composite synthesized via facile hydrothermal method. Materials Today Communications 2023, 35 , 106106. https://doi.org/10.1016/j.mtcomm.2023.106106
    29. Fabian Eller, Felix A. Wenzel, Richard Hildner, Remco W. A. Havenith, Eva M. Herzig. Spark Discharge Doping—Achieving Unprecedented Control over Aggregate Fraction and Backbone Ordering in Poly(3‐hexylthiophene) Solutions. Small 2023, 19 (21) https://doi.org/10.1002/smll.202207537
    30. Wojciech Grochala, Paweł Szarek. Lessons from the maximum hardness principle. 2023, 277-312. https://doi.org/10.1016/B978-0-32-390259-5.00016-0
    31. Maria Chiara Storer, Christopher A. Hunter. The surface site interaction point approach to non-covalent interactions. Chemical Society Reviews 2022, 51 (24) , 10064-10082. https://doi.org/10.1039/D2CS00701K
    32. Tom M. Nolte, A. Jan Hendriks, Laurie A. Novák, Willie J. G. M. Peijnenburg. A universal free energy relationship for both hard and soft radical addition in water. Journal of Physical Organic Chemistry 2022, 35 (4) https://doi.org/10.1002/poc.4317
    33. Philipp Erdmann, Lutz Greb. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angewandte Chemie 2022, 134 (4) https://doi.org/10.1002/ange.202114550
    34. Philipp Erdmann, Lutz Greb. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angewandte Chemie International Edition 2022, 61 (4) https://doi.org/10.1002/anie.202114550
    35. Philipp Erdmann, Lutz Greb. Multidimensional Lewis Acidity: A Consistent Data Set of Chloride, Hydride, Methide, Water and Ammonia Affinities for 183 p‐Block Element Lewis Acids. ChemPhysChem 2021, 22 (10) , 935-943. https://doi.org/10.1002/cphc.202100150
    36. Eric G. Moschetta, Kristina M. Gans, Robert M. Rioux. Characterization of sites of different thermodynamic affinities on the same metal center via isothermal titration calorimetry. Journal of Catalysis 2013, 302 , 1-9. https://doi.org/10.1016/j.jcat.2013.02.020
    37. Jie Zhang, Anubendu Adhikary, Krista M. King, Jeanette A. Krause, Hairong Guan. Substituent effects on Ni–S bond dissociation energies and kinetic stability of nickel arylthiolate complexes supported by a bis(phosphinite)-based pincer ligand. Dalton Transactions 2012, 41 (26) , 7959. https://doi.org/10.1039/c2dt30407d
    38. . Lewis Basicity and Affinity Measurement: Definitions and Context. 2009, 1-69. https://doi.org/10.1002/9780470681909.ch1
    39. Robert K. Oldak, Raymond A. Pearson. Evaluation of infrared spectroscopic techniques to determine the Drago constants of a cycloaliphatic epoxy. Journal of Adhesion Science and Technology 2007, 21 (9) , 775-793. https://doi.org/10.1163/156856107781061440
    40. Rui M. Borges dos Santos, Benedito J. Costa Cabral, José A. Martinho Simões. Bond-dissociation enthalpies in the gas phase and in organic solvents: Making ends meet. Pure and Applied Chemistry 2007, 79 (8) , 1369-1382. https://doi.org/10.1351/pac200779081369
    41. Catarina F. Correia, Paulo M. Nunes, Rui M. Borges dos Santos, José A. Martinho Simões. Gas-phase energetics of organic free radicals using time-resolved photoacoustic calorimetry. Thermochimica Acta 2004, 420 (1-2) , 3-11. https://doi.org/10.1016/j.tca.2003.10.027
    42. Sylvio Canuto, Kaline Coutinho, Benedito J. Costa Cabral. Hydrogen Bonding and the Energetics of Homolytic Dissociation in Solution. 2004, 581-599. https://doi.org/10.1007/978-94-017-0448-9_25
    43. Catarina F. Correia, Rita C. Guedes, Rui M. Borges dos Santos, Benedito J. Costa Cabral, José A. Martinho Simões. O–H Bond dissociation enthalpies in hydroxyphenols. A time-resolved photoacoustic calorimetry and quantum chemistry study. Phys. Chem. Chem. Phys. 2004, 6 (9) , 2109-2118. https://doi.org/10.1039/B314093H
    44. Hendrik Zipse, Axel Schulz*. Glossar zur Theoretischen Organischen Chemie. Angewandte Chemie 2003, 115 (19) , 2248-2294. https://doi.org/10.1002/ange.200280010
    45. Manuel A. V. Ribeiro da Silva, M. Agostinha R. Matos, Margarida S. Miranda, M. Helena F. A. Sousa, Rui M. Borges dos Santos, Magda M. Bizarro, José A. Martinho Simões. Standard Enthalpies of Formation of 2,6-Di-tert-butyl4-methylphenol and 3,5-Di-tert-butylphenol and Their Phenoxy Radicals. Structural Chemistry 2001, 12 (2) , 171-181. https://doi.org/10.1023/A:1016600727116
    46. Rui M. Borges dos Santos, Ana Lúcia C. Lagoa, José A. Martinho Simões. Photoacoustic calorimetry. An examination of a non-classical thermochemistry tool. The Journal of Chemical Thermodynamics 1999, 31 (11) , 1483-1510. https://doi.org/10.1006/jcht.1999.0513
    47. Magda M. Bizarro, Benedito J. Costa Cabral, Rui M. Borges dos Santos, Jose A. Martinho Simoes. Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies. Pure and Applied Chemistry 1999, 71 (7) , 1249-1256. https://doi.org/10.1046/j.1365-3075.1999.00279.x

    Journal of Chemical Education

    Cite this: J. Chem. Educ. 1996, 73, 8, 701
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ed073p701
    Published August 1, 1996

    Article Views

    1105

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.