Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/2e4bbbb87b0f0d63a33bfe774b691efb.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Preparation and Reactions of 2,6-Di-t-butylpyridine and Related Hindered Bases. A Case of Steric Hindrance toward the Proton1,2 | Journal of the American Chemical Society
    Note

    Preparation and Reactions of 2,6-Di-t-butylpyridine and Related Hindered Bases. A Case of Steric Hindrance toward the Proton1,2
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1966, 88, 5, 986–992
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00957a023
    Published March 1, 1966

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 157 publications.

    1. Mahendra K. V. Rotta, Rupa Bai Addanki, Pavan K. Kancharla. Sterically Hindered and Electron-Deficient 2,4,6-Tri-tert-butylpyrimidinium as a π-Lewis Acid Toward Organocatalytic Silyl Protection of Carbohydrates Using Trialkyl/aryl Silanes. Organic Letters 2025, 27 (24) , 6409-6414. https://doi.org/10.1021/acs.orglett.5c01693
    2. Woohyun Jo, Chattawat Thangsrikeattigun, Changsu Ryu, Seungcheol Han, Changjin Oh, Mu-Hyun Baik, Seung Hwan Cho. Regiodivergent Alkylation of Pyridines: Alkyllithium Clusters Direct Chemical Reactivity. Journal of the American Chemical Society 2025, 147 (10) , 8597-8606. https://doi.org/10.1021/jacs.4c17198
    3. Wenhao Chen, Shenhui Li, Lezhi Yi, Ziyi Chen, Zihao Li, Yifan Wu, Wei Yan, Feng Deng, Hexiang Deng. Precise Distance Control and Functionality Adjustment of Frustrated Lewis Pairs in Metal–Organic Frameworks. Journal of the American Chemical Society 2024, 146 (17) , 12215-12224. https://doi.org/10.1021/jacs.4c03133
    4. Rupa Bai Addanki, Sangay Moktan, Suvendu Halder, Madhur Sharma, Bikash K. Sarmah, Kalishankar Bhattacharyya, Pavan K. Kancharla. Exploiting the Strained Ion-Pair Interactions of Sterically Hindered Pyridinium Salts Toward SN2 Glycosylation of Glycosyl Trichloroacetimidates. The Journal of Organic Chemistry 2024, 89 (6) , 3713-3725. https://doi.org/10.1021/acs.joc.3c02207
    5. Viktoria A. Ikonnikova, Ekaterina A. Zhigileva, Amir M. Al Mufti, Pavel N. Solyev, Mikhail S. Baranov, Andrey A. Mikhaylov. Merging Johnson–Claisen and Aromatic Claisen [3,3]-Sigmatropic Rearrangements: Ytterbium Triflate/2,6-Di-tert-butylpyridine Catalytic System. The Journal of Organic Chemistry 2023, 88 (14) , 9737-9749. https://doi.org/10.1021/acs.joc.3c00368
    6. Marie Vayer, Sophie Rodrigues, Solène Miaskiewicz, David Gatineau, Yves Gimbert, Vincent Gandon, Christophe Bour. Potassium Carbonate to Unlock a GaCl3-Catalyzed C–H Propargylation of Arenes. ACS Catalysis 2022, 12 (1) , 305-315. https://doi.org/10.1021/acscatal.1c03014
    7. Ananya Mukherji, Rupa Bai Addanki, Suvendu Halder, Pavan K. Kancharla. Sterically Strained Brønsted Pair Catalysis by Bulky Pyridinium Salts: Direct Stereoselective Synthesis of 2-Deoxy and 2,6-Dideoxy-β-thioglycosides from Glycals. The Journal of Organic Chemistry 2021, 86 (23) , 17226-17243. https://doi.org/10.1021/acs.joc.1c02305
    8. Pengzhi Wang, Jonathan S. Lindsey. Synthesis of AD-Dihydrodipyrrins Equipped with Latent Substituents of Native Chlorophylls and Bacteriochlorophylls. The Journal of Organic Chemistry 2021, 86 (17) , 11794-11811. https://doi.org/10.1021/acs.joc.1c01239
    9. Adisak Chatupheeraphat, Magnus Rueping, Marc Magre. Chemo- and Regioselective Magnesium-Catalyzed ortho-Alkenylation of Anilines. Organic Letters 2019, 21 (22) , 9153-9157. https://doi.org/10.1021/acs.orglett.9b03526
    10. Titli Ghosh, Ananya Mukherji, Pavan K. Kancharla. Sterically Hindered 2,4,6-Tri-tert-butylpyridinium Salts as Single Hydrogen Bond Donors for Highly Stereoselective Glycosylation Reactions of Glycals. Organic Letters 2019, 21 (10) , 3490-3495. https://doi.org/10.1021/acs.orglett.9b00626
    11. Miao Hong, Jiawei Chen, Eugene Y.-X. Chen. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid–Base Pairs. Chemical Reviews 2018, 118 (20) , 10551-10616. https://doi.org/10.1021/acs.chemrev.8b00352
    12. Matthew R. Mills, Longzhu Q. Shen, David Z. Zhang, Alexander D. Ryabov, and Terrence J. Collins . Iron(III) Ejection from a “Beheaded” TAML Activator: Catalytically Relevant Mechanistic Insight into the Deceleration of Electrophilic Processes by Electron Donors. Inorganic Chemistry 2017, 56 (17) , 10226-10234. https://doi.org/10.1021/acs.inorgchem.7b00921
    13. Noriyoshi Arai and Takeshi Ohkuma . Photochemically Promoted Aza-Diels–Alder-Type Reaction: High Catalytic Activity of the Cr(III)/Bipyridine Complex Enhanced by Visible Light Irradiation. The Journal of Organic Chemistry 2017, 82 (14) , 7628-7636. https://doi.org/10.1021/acs.joc.7b00838
    14. Shinya Tanaka, Kota Watanabe, Yuuki Tanaka, and Tetsutaro Hattori . EtAlCl2/2,6-Disubstituted Pyridine-Mediated Carboxylation of Alkenes with Carbon Dioxide. Organic Letters 2016, 18 (11) , 2576-2579. https://doi.org/10.1021/acs.orglett.6b00918
    15. Martín Fañanás-Mastral and Ben L. Feringa . Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates. Journal of the American Chemical Society 2014, 136 (28) , 9894-9897. https://doi.org/10.1021/ja505281v
    16. Matti Reißmann, André Schäfer, Sebastian Jung, and Thomas Müller . Silylium Ion/Phosphane Lewis Pairs. Organometallics 2013, 32 (22) , 6736-6744. https://doi.org/10.1021/om400559x
    17. Jenna L. Jeffrey and Richmond Sarpong . Chichibabin-Type Direct Alkylation of Pyridyl Alcohols with Alkyl Lithium Reagents. Organic Letters 2012, 14 (21) , 5400-5403. https://doi.org/10.1021/ol3024117
    18. Olga V. Dyablo, Elena A. Shmoilova, Alexander F. Pozharskii, Valery A. Ozeryanskii, Oleg N. Burov, and Zoya A. Starikova . 4,5-Bis(dimethylamino)quinolines: Proton Sponge versus Azine Behavior. Organic Letters 2012, 14 (16) , 4134-4137. https://doi.org/10.1021/ol301777s
    19. Tanja Voss, Tayseer Mahdi, Edwin Otten, Roland Fröhlich, Gerald Kehr, Douglas W. Stephan, and Gerhard Erker . Frustrated Lewis Pair Behavior of Intermolecular Amine/B(C6F5)3 Pairs. Organometallics 2012, 31 (6) , 2367-2378. https://doi.org/10.1021/om300017u
    20. Christoph Rosorius, Gerald Kehr, Roland Fröhlich, Stefan Grimme, and Gerhard Erker . Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged Per-pentafluorophenylated P/B Pair. Organometallics 2011, 30 (15) , 4211-4219. https://doi.org/10.1021/om200569k
    21. Michael Krayer, Marcin Ptaszek, Han-Je Kim, Kelly R. Meneely, Dazhong Fan, Kristen Secor and Jonathan S. Lindsey. Expanded Scope of Synthetic Bacteriochlorins via Improved Acid Catalysis Conditions and Diverse Dihydrodipyrrin-Acetals. The Journal of Organic Chemistry 2010, 75 (4) , 1016-1039. https://doi.org/10.1021/jo9025572
    22. Vera L. S. Freitas, William E. Acree, Jr. and Maria D. M. C. Ribeiro da Silva . Thermochemical Study of Three Hindered Pyridine Derivatives. Journal of Chemical & Engineering Data 2008, 53 (8) , 1820-1823. https://doi.org/10.1021/je800155q
    23. Yuji Kikukawa, Syuhei Yamaguchi, Kazutaka Tsuchida, Yoshinao Nakagawa, Kazuhiro Uehara, Kazuya Yamaguchi and Noritaka Mizuno . Synthesis and Catalysis of Di- and Tetranuclear Metal Sandwich-Type Silicotungstates [(γ-SiW10O36)2M2(μ-OH)2]10− and [(γ-SiW10O36)2M4(μ4-O)(μ-OH)6]8− (M = Zr or Hf). Journal of the American Chemical Society 2008, 130 (16) , 5472-5478. https://doi.org/10.1021/ja078313i
    24. Jianfang Chai,, Stewart P. Lewis,, Joseph P. Kennedy, and, Scott Collins. Isobutene Polymerization Using Chelating Diboranes:  Reactions of a Hindered Pyridine with Carbocations Bearing α-Protons. Macromolecules 2007, 40 (21) , 7421-7424. https://doi.org/10.1021/ma0711137
    25. Alexandru T. Balaban,, Ion Ghiviriga,, Edmund W. Czerwinski,, Priyadarsi De, and, Rudolf Faust. Simple Synthesis of a Weak Nucleophilic Base (4-Ethyl-2,6-diisopropyl-3,5-dimethylpyridine) Evidencing a Double Janus Group Effect. The Journal of Organic Chemistry 2004, 69 (2) , 536-542. https://doi.org/10.1021/jo035416k
    26. Dan Fǎrcaşiu,, Rodica Leu, and, Avelino Corma. Evaluation of Accessible Acid Sites on Solids by 15N NMR Spectroscopy with Di-tert-butylpyridine as Base. The Journal of Physical Chemistry B 2002, 106 (5) , 928-932. https://doi.org/10.1021/jp012221c
    27. Saša Stanković and, James H. Espenson. Oxidation of Methyl Trimethylsilyl Ketene Acetals to α-Hydroxyesters with Urea Hydrogen Peroxide Catalyzed by Methyltrioxorhenium. The Journal of Organic Chemistry 2000, 65 (18) , 5528-5530. https://doi.org/10.1021/jo000212e
    28. Dan Fǎrcaşiu,, Marta Lezcano, and, Povilas Lukinskas, , David H. Waldeck. Effects of Anions on the NMR Relaxation of Pyridinium and Di-tert-Butylpyridinium Ions in Acid Solution. Implications for Chemisorption on Solid Acids. The Journal of Physical Chemistry A 2000, 104 (22) , 5190-5196. https://doi.org/10.1021/jp994472f
    29. Mary J. Cloninger and, Larry E. Overman. Stereocontrolled Synthesis of Trisubstituted Tetrahydropyrans. Journal of the American Chemical Society 1999, 121 (5) , 1092-1093. https://doi.org/10.1021/ja9838007
    30. James D. Dudones and, Paul Sampson. Preparation of a C-1 Oxygenated Taxane A Ring via a Highly Efficient Diels−Alder Strategy Utilizing an α-(Aroyloxy) Enone Captodative Dienophile. The Journal of Organic Chemistry 1997, 62 (21) , 7508-7511. https://doi.org/10.1021/jo9711753
    31. Louis A. Carpino,, Dumitru Ionescu, and, Ayman El-Faham. Peptide Coupling in the Presence of Highly Hindered Tertiary Amines. The Journal of Organic Chemistry 1996, 61 (7) , 2460-2465. https://doi.org/10.1021/jo950912x
    32. Jiasi Li, Shik Chi Edman Tsang, Guangchao Li. Recent Advances in Heterogeneous Frustrated Lewis Pair: Synthesis, Characterization, and Catalysis. Advanced Materials 2025, 24 https://doi.org/10.1002/adma.202502101
    33. Luke Britton, Andrew D. Bage, Sarah L. McOnie, Stephen P. Thomas. Multifaceted Hidden Catalysis Revealed by Mechanistic Analysis of FeBr 3 ‐Catalysed Arene Borylation. Angewandte Chemie International Edition 2025, 64 (12) https://doi.org/10.1002/anie.202423929
    34. Luke Britton, Andrew D. Bage, Sarah L. McOnie, Stephen P. Thomas. Multifaceted Hidden Catalysis Revealed by Mechanistic Analysis of FeBr 3 ‐Catalysed Arene Borylation. Angewandte Chemie 2025, 137 (12) https://doi.org/10.1002/ange.202423929
    35. Vy-Phuong Tran, Pengzhi Wang, Nobuyuki Matsumoto, Sijia Liu, Haoyu Jing, Phattananawee Nalaoh, Khiem Chau Nguyen, Masahiko Taniguchi, Jonathan S. Lindsey. Bacteriochlorin syntheses - Status, problems, and exploration. Journal of Porphyrins and Phthalocyanines 2023, 27 (11) , 1502-1551. https://doi.org/10.1142/S1088424623501171
    36. Anh Thu Nguyen Tran, Zhiyuan Wu, Duy T. M. Chung, Phattananawee Nalaoh, Jonathan S. Lindsey. Synthesis of model southern rim structures of photosynthetic tetrapyrroles and phyllobilins. New Journal of Chemistry 2023, 47 (29) , 13626-13637. https://doi.org/10.1039/D3NJ02515B
    37. Feng Du, Mengyu Wang, Libin Wang, Yushan Li, Yuangao Wang, Wenan Deng, Wenjuan Yan, Xin Jin. Catalytic conversion of polyoxymethylene with bio-derived substrates: kinetic modeling on solvent enhancement effect and experimental studies on reaction mechanism. Chemical Engineering Science 2023, 274 , 118670. https://doi.org/10.1016/j.ces.2023.118670
    38. Govardhana Reddy Peddiahgari Vasu, Krishna Reddy Motakatla Venkata, Raghava Reddy Kakarla, Kalluri V.S. Ranganath, Tejraj M. Aminabhavi. Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review. Environmental Research 2023, 225 , 115515. https://doi.org/10.1016/j.envres.2023.115515
    39. Juno Son, Zhiyuan Wu, Jinghuai Dou, Hikaru Fujita, Phuong-Lien Doan Cao, Qihui Liu, Jonathan S. Lindsey. Tethered Indoxyl-Glucuronides for Enzymatically Triggered Cross-Linking. Molecules 2023, 28 (10) , 4143. https://doi.org/10.3390/molecules28104143
    40. Ananya Mukherji, Pavan K. Kancharla. Cl–···H–N Interaction Assisted Addition of Sulfonamides to Enol Ethers: Synthesis of 2-Deoxy and 2,6-Dideoxy Sulfonamido Glycosides. Synlett 2023, 34 (06) , 657-662. https://doi.org/10.1055/a-1892-4608
    41. Justin K. Kirkland, Sophia K. Johnson, Konstantinos D. Vogiatzis. Computational investigation of functionalized carbenes on dinitrogen activation. Journal of Computational Chemistry 2023, 44 (7) , 832-842. https://doi.org/10.1002/jcc.27046
    42. Ludwig Zapf, Melanie Riethmann, Steffen A. Föhrenbacher, Maik Finze, Udo Radius. An easy-to-perform evaluation of steric properties of Lewis acids. Chemical Science 2023, 14 (9) , 2275-2288. https://doi.org/10.1039/D3SC00037K
    43. Dandan Jiang, Manas Ghara, Sudip Pan, Lili Zhao, Pratim Kumar Chattaraj. Application of frustrated Lewis pairs in small molecule activation and associated transformations. 2023, 387-410. https://doi.org/10.1016/B978-0-12-822943-9.00023-1
    44. Miquel Navarro, Juan José Moreno, Marina Pérez-Jiménez, Jesús Campos. Small molecule activation with bimetallic systems: a landscape of cooperative reactivity. Chemical Communications 2022, 58 (80) , 11220-11235. https://doi.org/10.1039/D2CC04296G
    45. Haoyu Jing, Pengzhi Wang, Boyang Chen, Jianbing Jiang, Pothiappan Vairaprakash, Sijia Liu, Jie Rong, Chih-Yuan Chen, Phattananawee Nalaoh, Jonathan S. Lindsey. Synthesis of bacteriochlorins bearing diverse β-substituents. New Journal of Chemistry 2022, 46 (12) , 5534-5555. https://doi.org/10.1039/D1NJ05852E
    46. Hans Gildenast, Felix Garg, Ulli Englert. Sterically Crowded Tris(2‐(trimethylsilyl)phenyl)phosphine – Is it Still a Ligand?. Chemistry – A European Journal 2022, 28 (7) https://doi.org/10.1002/chem.202103555
    47. Feng Du, Mengyu Wang, Libin Wang, Yushan Li, Yuangao Wang, Mengyuan Liu, Dongpei Zhang, Wenan Deng, Xin Jin. Catalytic Conversion of Polyoxymethylene with Bio-Derived Substrates: A Mechanistic Study on Solvent Enhancement and B/L Acid Synergism. SSRN Electronic Journal 2022, 2017 https://doi.org/10.2139/ssrn.4158275
    48. Miquel Navarro, Juan José Moreno, Jesús Campos. Frustrated Lewis Pair Systems. 2022, 523-616. https://doi.org/10.1016/B978-0-12-820206-7.00129-3
    49. . Context, Background, and Discovery. 2021, 1-19. https://doi.org/10.1039/9781839162442-00001
    50. Daisuke Sato, Zhiyuan Wu, Hikaru Fujita, Jonathan Lindsey. Design, Synthesis, and Utility of Defined Molecular Scaffolds. Organics 2021, 2 (3) , 161-273. https://doi.org/10.3390/org2030013
    51. Rakesh Parida, Ricardo Inostroza Rivera, Swapan Sinha, Santanab Giri. Can Superhalogen Ligand Make More Reactive Frustrated Lewis Pairs?. ChemistrySelect 2021, 6 (31) , 8068-8073. https://doi.org/10.1002/slct.202102189
    52. Khiem Chau Nguyen, Pengzhi Wang, Jonathan S. Lindsey. Study of conditions for streamlined assembly of a model bacteriochlorophyll from two dihydrodipyrrin halves. New Journal of Chemistry 2021, 45 (2) , 569-581. https://doi.org/10.1039/D0NJ04855K
    53. Saeed Baghery, Mahmoud Zarei, Mohammad Ali Zolfigol, Shadpour Mallakpour, Vajiheh Behranvand. Application of trityl moieties in chemical processes: part I. Journal of the Iranian Chemical Society 2020, 17 (11) , 2737-2843. https://doi.org/10.1007/s13738-020-01980-5
    54. Shaofei Zhang, David Lebœuf, Joseph Moran. Brønsted Acid and H‐Bond Activation in Boronic Acid Catalysis. Chemistry – A European Journal 2020, 26 (44) , 9883-9888. https://doi.org/10.1002/chem.202001902
    55. Suman Debnath, Sayanti Basu, Bradley M. Schmidt, Jeramie J. Adams, Navamoney Arulsamy, Dean M. Roddick. Platinum ethylene dimerization catalysts: Diphosphine vs. diimine ancillary ligand effects. Polyhedron 2020, 181 , 114461. https://doi.org/10.1016/j.poly.2020.114461
    56. Hikaru Fujita, Yunlong Zhang, Zhiyuan Wu, Jonathan S. Lindsey. Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions. New Journal of Chemistry 2020, 44 (10) , 3856-3867. https://doi.org/10.1039/C9NJ06187H
    57. Hikaru Fujita, Jinghuai Dou, Nobuyuki Matsumoto, Zhiyuan Wu, Jonathan S. Lindsey. Enzymatically triggered chromogenic cross-linking agents under physiological conditions. New Journal of Chemistry 2020, 44 (3) , 719-743. https://doi.org/10.1039/C9NJ04126E
    58. Marian Rauser, Sebastian Schröder, Meike Niggemann. Early Main Group Metal L ewis Acid Catalysis. 2020, 279-310. https://doi.org/10.1002/9783527818020.ch11
    59. Iurii Bodachivskyi, Unnikrishnan Kuzhiumparambil, D. Bradley G. Williams. A Systematic Study of Metal Triflates in Catalytic Transformations of Glucose in Water and Methanol: Identifying the Interplay of Brønsted and Lewis Acidity. ChemSusChem 2019, 12 (14) , 3263-3270. https://doi.org/10.1002/cssc.201900292
    60. Fabrizio Medici, Julien Maury, Gilles Lemière, Louis Fensterbank. Interaction between Spirosilanes and Lewis Bases: from Coordination to Frustration. Chemistry – A European Journal 2019, 25 (40) , 9438-9442. https://doi.org/10.1002/chem.201901355
    61. Hwee Ting Ang, Jason P. G. Rygus, Dennis G. Hall. Two-component boronic acid catalysis for increased reactivity in challenging Friedel–Crafts alkylations with deactivated benzylic alcohols. Organic & Biomolecular Chemistry 2019, 17 (24) , 6007-6014. https://doi.org/10.1039/C9OB01043B
    62. Lei Liu, Binit Lukose, Pablo Jaque, Bernd Ensing. Reaction mechanism of hydrogen activation by frustrated Lewis pairs. Green Energy & Environment 2019, 4 (1) , 20-28. https://doi.org/10.1016/j.gee.2018.06.001
    63. Jan Schröder, Daniel Himmel, Tobias Böttcher. 2,6‐Bis(diazaboryl)pyridine: A Superbasic Sterically Demanding Pyridine Ligand.. Chemistry – A European Journal 2017, 23 (45) , 10763-10767. https://doi.org/10.1002/chem.201702890
    64. Gerald Kehr, Gerhard Erker. Frustrated Lewis Pair Chemistry: Searching for New Reactions. The Chemical Record 2017, 17 (8) , 803-815. https://doi.org/10.1002/tcr.201700010
    65. Michał Michalak, Karol Michalak, Jerzy Wicha. The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Natural Product Reports 2017, 34 (4) , 361-410. https://doi.org/10.1039/C6NP00107F
    66. Chiwon Hwang, Woohyun Jo, Seung Hwan Cho. Base-promoted, deborylative secondary alkylation of N-heteroaromatic N-oxides with internal gem-bis[(pinacolato)boryl]alkanes: a facile derivatization of 2,2′-bipyridyl analogues. Chemical Communications 2017, 53 (54) , 7573-7576. https://doi.org/10.1039/C7CC03731G
    67. Yun He, Piyush K. Agarwal, I. N. Chaithanya Kiran, Ruocheng Yu, Bei Cao, Cheng Zou, Xinghua Zhou, Huacheng Xu, Biao Xu, Lei Zhu, Yu Lan, K. C. Nicolaou. Efficient Synthesis of Dimeric Oxazoles, Piperidines and Tetrahydroisoquinolines from N ‐Substituted 2‐Oxazolones. Chemistry – A European Journal 2016, 22 (23) , 7696-7701. https://doi.org/10.1002/chem.201601471
    68. Marcos Becerra, Misael Real-Enriquez, Carlos Espinosa-Gavilanes, Cesar H. Zambrano, Rafael Almeida, F. Javier Torres, Luis Rincón. On the thermodynamic stability of the intermolecular association between Lewis acids and Lewis bases: a DFT study. Theoretical Chemistry Accounts 2016, 135 (3) https://doi.org/10.1007/s00214-016-1829-5
    69. Renxiao Liang, Kai Chen, Qiaohui Zhang, Jiantao Zhang, Huanfeng Jiang, Shifa Zhu. Rapid Access to 2‐Methylene Tetrahydrofurans and γ‐Lactones: A Tandem Four‐Step Process. Angewandte Chemie 2016, 128 (7) , 2633-2637. https://doi.org/10.1002/ange.201511133
    70. Renxiao Liang, Kai Chen, Qiaohui Zhang, Jiantao Zhang, Huanfeng Jiang, Shifa Zhu. Rapid Access to 2‐Methylene Tetrahydrofurans and γ‐Lactones: A Tandem Four‐Step Process. Angewandte Chemie International Edition 2016, 55 (7) , 2587-2591. https://doi.org/10.1002/anie.201511133
    71. I S Kovalev, D S Kopchuk, G V Zyryanov, V L Rusinov, O N Chupakhin, V N Charushin. Organolithium compounds in the nucleophilic substitution of hydrogen in arenes and hetarenes. Russian Chemical Reviews 2015, 84 (12) , 1191-1225. https://doi.org/10.1070/RCR4462
    72. Helen L. Ngo. Lewis Base Additives Improve the Zeolite Ferrierite‐Catalyzed Synthesis of Isostearic Acids. Journal of the American Oil Chemists' Society 2015, 92 (4) , 613-619. https://doi.org/10.1007/s11746-015-2608-5
    73. Yuran Wang, Ferdinand Vogelgsang, Yuriy Román‐Leshkov. Acid‐catalyzed Oxidation of Levulinate Derivatives to Succinates under Mild Conditions. ChemCatChem 2015, 7 (6) , 916-920. https://doi.org/10.1002/cctc.201403014
    74. SANJOY MUKHERJEE, PAKKIRISAMY THILAGAR. Frustrated Lewis pairs: Design and reactivity. Journal of Chemical Sciences 2015, 127 (2) , 241-255. https://doi.org/10.1007/s12039-015-0783-4
    75. Mark D. Greenhalgh, Alison S. Jones, Stephen P. Thomas. Iron‐Catalysed Hydrofunctionalisation of Alkenes and Alkynes. ChemCatChem 2015, 7 (2) , 190-222. https://doi.org/10.1002/cctc.201402693
    76. Patricia Pérez, Diana Yepes, Pablo Jaque, Eduardo Chamorro, Luis R. Domingo, Rene S. Rojas, Alejandro Toro-Labbé. A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs. Physical Chemistry Chemical Physics 2015, 17 (16) , 10715-10725. https://doi.org/10.1039/C5CP00306G
    77. Guilong Li, Jon C. Antilla. Reduction of C=O and C=N. 2013, 941-974. https://doi.org/10.1002/9783527658862.ch32
    78. Andrea J. Peters, Matthew P. Rainka, Lakshmi Krishnan, Sydney Laramie, Matthew Dodd, Jeffrey A. Reimer. Electrochemical characterization of hydrogen-bonding complexation between indoline and nitrogen containing bases. Journal of Electroanalytical Chemistry 2013, 691 , 57-65. https://doi.org/10.1016/j.jelechem.2012.12.006
    79. Duncan F. Wass, Andy M. Chapman. Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems. 2013, 261-280. https://doi.org/10.1007/128_2012_395
    80. Julien Godeau, Fabien Fontaine‐Vive, Sylvain Antoniotti, Elisabet Duñach. Experimental and Theoretical Studies on the Bismuth‐Triflate‐Catalysed Cycloisomerisation of 1,6,10‐Trienes and Aryl Polyenes. Chemistry – A European Journal 2012, 18 (52) , 16815-16822. https://doi.org/10.1002/chem.201202263
    81. Gerald Kehr, Gerhard Erker. Ferrocenes in Frustrated Lewis Pair Chemistry. 2012https://doi.org/10.1002/9780470682531.pat0661
    82. Anastasia A. Grishina, Svetlana M. Polyakova, Roman A. Kunetskiy, Ivana Císařová, Ilya M. Lyapkalo. 4,5‐Disubstituted N , N′ ‐Di‐ tert ‐alkyl Imidazolium Salts: New Synthesis and Structural Features. Chemistry – A European Journal 2011, 17 (1) , 96-100. https://doi.org/10.1002/chem.201002805
    83. Darrell Dean, Boyd Davis, Philip G. Jessop. The effect of temperature, catalyst and sterics on the rate of N-heterocycledehydrogenation for hydrogenstorage. New J. Chem. 2011, 35 (2) , 417-422. https://doi.org/10.1039/C0NJ00511H
    84. Gerhard Erker. Organometallic frustrated Lewis pair chemistry. Dalton Transactions 2011, 40 (29) , 7475. https://doi.org/10.1039/c1dt10152h
    85. Sylvain Antoniotti, Vincent Dalla, Elisabet Duñach. Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate – der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie 2010, 122 (43) , 8032-8060. https://doi.org/10.1002/ange.200906407
    86. Sylvain Antoniotti, Vincent Dalla, Elisabet Duñach. Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis—The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition 2010, 49 (43) , 7860-7888. https://doi.org/10.1002/anie.200906407
    87. Rafael R. Kostikov, Sánchez-Sancho Francisco, María Garranzo, M. Carmen Murcia. 2,6-Di- t -butylpyridine. 2010https://doi.org/10.1002/047084289X.rd068.pub2
    88. Alma Dzudza, Tobin J. Marks. Efficient Intramolecular Hydroalkoxylation of Unactivated Alkenols Mediated by Recyclable Lanthanide Triflate Ionic Liquids: Scope and Mechanism. Chemistry – A European Journal 2010, 16 (11) , 3403-3422. https://doi.org/10.1002/chem.200902269
    89. João F.S. Carvalho, M. Manuel Cruz Silva, M. Luisa Sá e Melo. Efficient trans-diaxial hydroxylation of Δ5-steroids. Tetrahedron 2010, 66 (13) , 2455-2462. https://doi.org/10.1016/j.tet.2010.01.089
    90. D. Bradley G. Williams, Michelle Lawton. Metal triflates: On the question of Lewis versus Brønsted acidity in retinyl carbocation formation. Journal of Molecular Catalysis A: Chemical 2010, 317 (1-2) , 68-71. https://doi.org/10.1016/j.molcata.2009.10.023
    91. Douglas W. Stephan, Gerhard Erker. Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr. Angewandte Chemie 2010, 122 (1) , 50-81. https://doi.org/10.1002/ange.200903708
    92. Douglas W. Stephan, Gerhard Erker. Frustrated Lewis Pairs: Metal‐free Hydrogen Activation and More. Angewandte Chemie International Edition 2010, 49 (1) , 46-76. https://doi.org/10.1002/anie.200903708
    93. Mathieu J.‐L. Tschan, Christophe M. Thomas, Henri Strub, Jean‐François Carpentier. Copper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation Reactions. Advanced Synthesis & Catalysis 2009, 351 (14-15) , 2496-2504. https://doi.org/10.1002/adsc.200800750
    94. Ramachandra S. Hosmane, Joel F. Liebman. Paradoxes and paradigms: why is quinoline less basic than pyridine or isoquinoline? A classical organic chemical perspective. Structural Chemistry 2009, 20 (4) , 693-697. https://doi.org/10.1007/s11224-009-9464-6
    95. Eric Fillion, Dan Fishlock. Scandium triflate-catalyzed intramolecular Friedel–Crafts acylation with Meldrum's acids: insight into the mechanism. Tetrahedron 2009, 65 (33) , 6682-6695. https://doi.org/10.1016/j.tet.2009.05.058
    96. Michal Sobkowski, Jacek Stawinski, Adam Kraszewski. The role of nucleophilic catalysis in chemistry and stereochemistry of ribonucleosideH-phosphonate condensation. New J. Chem. 2009, 33 (1) , 164-170. https://doi.org/10.1039/B812780H
    97. Fernando Blanco, Daniel H. O’ Donovan, Ibon Alkorta, José Elguero. Substitution effects on neutral and protonated pyridine derivatives along the periodic table. Structural Chemistry 2008, 19 (2) , 339-352. https://doi.org/10.1007/s11224-008-9290-2
    98. David A. Powell, Guillaume Pelletier. Copper triflate/t-BuOOAc-catalyzed amidation of allylic and benzylic acetates with sulfonamides. Tetrahedron Letters 2008, 49 (16) , 2495-2498. https://doi.org/10.1016/j.tetlet.2008.02.135
    99. M. Shanthi, S. Kabilan. Substituent and solvent effects on electronic spectra of some substituted phenoxyacetic acids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67 (2) , 479-482. https://doi.org/10.1016/j.saa.2006.08.004
    100. Hongmei Li. 2,4,6-Tri- tert -butylpyridine. 2004https://doi.org/10.1002/047084289X.rn00512
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1966, 88, 5, 986–992
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00957a023
    Published March 1, 1966

    Article Views

    1720

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.