Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/561ed6abb07469dba6dd760ec92cf989.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
The Reaction of Cobalt Hydrotetracarbonyl with Olefins | Journal of the American Chemical Society
    Article

    The Reaction of Cobalt Hydrotetracarbonyl with Olefins
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1961, 83, 19, 4023–4027
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01480a017
    Published October 1, 1961

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 495 publications.

    1. Aiswarya Purushothaman, Shuailong Li, Shilpa Shilpa, Shao-Tao Bai, Raghavan B. Sunoj. Mechanistic Insights into Rh-Catalyzed Regio- and Enantioselective Hydroformylation of Cyclopropyl-Functionalized Trisubstituted Alkenes. The Journal of Organic Chemistry 2025, 90 (28) , 9892-9902. https://doi.org/10.1021/acs.joc.5c00878
    2. Yong Yuan, Tianyou Mou, Sooyeon Hwang, William N. Porter, Ping Liu, Jingguang G. Chen. Controlling Reaction Pathways of Ethylene Hydroformylation Using Isolated Bimetallic Rhodium–Cobalt Sites. Journal of the American Chemical Society 2025, 147 (14) , 12185-12196. https://doi.org/10.1021/jacs.5c01105
    3. Ines Blaha, Stefan Weber, Robin Dülger, Luis F. Veiros, Karl Kirchner. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catalysis 2024, 14 (17) , 13174-13180. https://doi.org/10.1021/acscatal.4c03364
    4. Yu Harabuchi, Tomohiko Yokoyama, Wataru Matsuoka, Taihei Oki, Satoru Iwata, Satoshi Maeda. Differentiating the Yield of Chemical Reactions Using Parameters in First-Order Kinetic Equations to Identify Elementary Steps That Control the Reactivity from Complicated Reaction Path Networks. The Journal of Physical Chemistry A 2024, 128 (14) , 2883-2890. https://doi.org/10.1021/acs.jpca.4c00204
    5. Katrin Köhnke, Ragnar Bjornsson, Walter Leitner, Andreas J. Vorholt. Mechanistic Aspects of Rhodium-Catalyzed Isoprene Hydroformylation: A Computational Study. Organometallics 2024, 43 (4) , 481-494. https://doi.org/10.1021/acs.organomet.3c00414
    6. Gong Zeng, Yunfeng Zheng, Guoqiang He, Cheng Zhang, Hangning Chen, Lixia Liang, Pan Liu, Jiantai Ma, Zhengping Dong. Efficient Catalytic Hydroformylation of Alkenes on Rh/CeO2 Catalysts Modulated by CeO2 Morphology. Industrial & Engineering Chemistry Research 2024, 63 (7) , 2958-2968. https://doi.org/10.1021/acs.iecr.3c03882
    7. Wenwen Gao, Shihuan Liu, Zhidong Wang, Jiatian Peng, Youzhi Zhang, Xinyue Yuan, Xin Zhang, Yichuan Li, Yuan Pan. Outlook of Cobalt-Based Catalysts for Heterogeneous Hydroformylation of Olefins: From Nanostructures to Single Atoms. Energy & Fuels 2024, 38 (4) , 2526-2547. https://doi.org/10.1021/acs.energyfuels.3c03037
    8. Zhengtian Pu, Jiankang Zhao, Haibin Yin, Jin Zhao, Xinlong Ma, Jie Zeng. Efficient Interfacial Sites between Metallic and Oxidized Cobalt for Propene Hydroformylation. Nano Letters 2024, 24 (3) , 852-858. https://doi.org/10.1021/acs.nanolett.3c03667
    9. Drew M. Hood, Ryan A. Johnson, David J. Vinyard, Frank R. Fronczek, George G. Stanley. Cationic Cobalt(II) Bisphosphine Hydroformylation Catalysis: In Situ Spectroscopic and Reaction Studies. Journal of the American Chemical Society 2023, 145 (36) , 19715-19726. https://doi.org/10.1021/jacs.3c04866
    10. Liang Qi, Sonali Das, Yanfei Zhang, Danna Nozik, Bruce C. Gates, Alexis T. Bell. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. Journal of the American Chemical Society 2023, 145 (5) , 2911-2929. https://doi.org/10.1021/jacs.2c11075
    11. Ke Zhang, Charles B. Musgrave III, Diane A. Dickie, William A. Goddard III, T. Brent Gunnoe. Capping Arene Ligated Rhodium-Catalyzed Olefin Hydrogenation: A Model Study of the Ligand Influence on a Catalytic Process That Incorporates Oxidative Addition and Reductive Elimination. Organometallics 2022, 41 (22) , 3373-3386. https://doi.org/10.1021/acs.organomet.2c00317
    12. Idil Ismail, Raphael Chantreau Majerus, Scott Habershon. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. The Journal of Physical Chemistry A 2022, 126 (40) , 7051-7069. https://doi.org/10.1021/acs.jpca.2c06408
    13. Joost N. H. Reek, Bas de Bruin, Sonja Pullen, Tiddo J. Mooibroek, Alexander M. Kluwer, Xavier Caumes. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical Reviews 2022, 122 (14) , 12308-12369. https://doi.org/10.1021/acs.chemrev.1c00862
    14. Kuo Zhao, Robert R. Knowles. Contra-Thermodynamic Positional Isomerization of Olefins. Journal of the American Chemical Society 2022, 144 (1) , 137-144. https://doi.org/10.1021/jacs.1c11681
    15. Hafsa Karroum, Sergey Chenakin, Sergei Alekseev, Viacheslav Iablokov, Yizhi Xiang, Vincent Dubois, Norbert Kruse. Terminal Amines, Nitriles, and Olefins through Catalytic CO Hydrogenation in the Presence of Ammonia. ACS Catalysis 2021, 11 (24) , 14977-14985. https://doi.org/10.1021/acscatal.1c03645
    16. Baiyin Wei, Xiaofang Liu, Yuchao Deng, Kaimin Hua, Junjun Chen, Hui Wang, Yuhan Sun. Efficient and Stable Co/β-Mo2C Catalyst for Hydroformylation. ACS Catalysis 2021, 11 (23) , 14319-14327. https://doi.org/10.1021/acscatal.1c04022
    17. Seungyeon Lee, Abhirup Patra, Phillip Christopher, Dionisios G. Vlachos, Stavros Caratzoulas. Theoretical Study of Ethylene Hydroformylation on Atomically Dispersed Rh/Al2O3 Catalysts: Reaction Mechanism and Influence of the ReOx Promoter. ACS Catalysis 2021, 11 (15) , 9506-9518. https://doi.org/10.1021/acscatal.1c00705
    18. Maxim R. Radzhabov, Neal P. Mankad. Cobalt-Catalyzed (E)-β-Selective Hydrogermylation of Terminal Alkynes. Organic Letters 2021, 23 (8) , 3221-3226. https://doi.org/10.1021/acs.orglett.1c00928
    19. Alex E. Carpenter, Curtis E. Moore, Arnold L. Rheingold, Joshua S. Figueroa. A Well-Defined Isocyano Analogue of HCo(CO)4. 3: Hydride Migration to Olefins, H-Atom Transfer and Reactivity toward Protic Sources. Organometallics 2021, 40 (7) , 968-978. https://doi.org/10.1021/acs.organomet.1c00065
    20. Satoshi Takebayashi, Robert R. Fayzullin. [Co(NHC)(CO)3]: Isolation and Reactivity Study of a Model 17-Electron Species in the Oxo Process. Organometallics 2021, 40 (4) , 500-507. https://doi.org/10.1021/acs.organomet.0c00765
    21. Jiandong Guo, Dongju Zhang, Xiaotai Wang. Mechanistic Insights into Hydroformylation Catalyzed by Cationic Cobalt(II) Complexes: In Silico Modification of the Catalyst System. ACS Catalysis 2020, 10 (22) , 13551-13559. https://doi.org/10.1021/acscatal.0c03161
    22. Andrea Causero, Carsten Troll, Bernhard Rieger. (+)-Limonene Functionalization: Syntheses, Optimization, and Scale-up Procedures for Sustainable Polymer Building Blocks. Industrial & Engineering Chemistry Research 2020, 59 (35) , 15464-15477. https://doi.org/10.1021/acs.iecr.0c02998
    23. Jonas Amsler, Bidyut B. Sarma, Giovanni Agostini, Gonzalo Prieto, Philipp N. Plessow, Felix Studt. Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society 2020, 142 (11) , 5087-5096. https://doi.org/10.1021/jacs.9b12171
    24. Anna C. Brezny, Clark R. Landis. Development of a Comprehensive Microkinetic Model for Rh(bis(diazaphospholane))-Catalyzed Hydroformylation. ACS Catalysis 2019, 9 (3) , 2501-2513. https://doi.org/10.1021/acscatal.9b00173
    25. Konstantinos D. Vogiatzis, Mikhail V. Polynski, Justin K. Kirkland, Jacob Townsend, Ali Hashemi, Chong Liu, Evgeny A. Pidko. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews 2019, 119 (4) , 2453-2523. https://doi.org/10.1021/acs.chemrev.8b00361
    26. Wenying Ai, Rui Zhong, Xufang Liu, Qiang Liu. Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chemical Reviews 2019, 119 (4) , 2876-2953. https://doi.org/10.1021/acs.chemrev.8b00404
    27. Anna C. Brezny, Clark R. Landis. Recent Developments in the Scope, Practicality, and Mechanistic Understanding of Enantioselective Hydroformylation. Accounts of Chemical Research 2018, 51 (9) , 2344-2354. https://doi.org/10.1021/acs.accounts.8b00335
    28. Sandra S. Nurttila, Pim R. Linnebank, Tetiana Krachko, Joost N. H. Reek. Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis. ACS Catalysis 2018, 8 (4) , 3469-3488. https://doi.org/10.1021/acscatal.8b00288
    29. Swechchha Pandey, K. Vipin Raj, Dinesh R. Shinde, Kumar Vanka, Varchaswal Kashyap, Sreekumar Kurungot, C. P. Vinod, Samir H. Chikkali. Iron Catalyzed Hydroformylation of Alkenes under Mild Conditions: Evidence of an Fe(II) Catalyzed Process. Journal of the American Chemical Society 2018, 140 (12) , 4430-4439. https://doi.org/10.1021/jacs.8b01286
    30. Anna C. Brezny and Clark R. Landis . Unexpected CO Dependencies, Catalyst Speciation, and Single Turnover Hydrogenolysis Studies of Hydroformylation via High Pressure NMR Spectroscopy. Journal of the American Chemical Society 2017, 139 (7) , 2778-2785. https://doi.org/10.1021/jacs.6b12533
    31. Steven W. M. Crossley, Carla Obradors, Ruben M. Martinez, and Ryan A. Shenvi . Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. Chemical Reviews 2016, 116 (15) , 8912-9000. https://doi.org/10.1021/acs.chemrev.6b00334
    32. Alex E. Carpenter, Arnold L. Rheingold, and Joshua S. Figueroa . A Well-Defined Isocyano Analogue of HCo(CO)4. 1: Synthesis, Decomposition, and Catalytic 1,1-Hydrogenation of Isocyanides. Organometallics 2016, 35 (14) , 2309-2318. https://doi.org/10.1021/acs.organomet.6b00297
    33. Donald A. Watson (Guest Editor). Legacy of Richard Heck. Organometallics 2016, 35 (9) , 1177-1178. https://doi.org/10.1021/acs.organomet.6b00261
    34. W. M. C. Sameera, Satoshi Maeda, and Keiji Morokuma . Computational Catalysis Using the Artificial Force Induced Reaction Method. Accounts of Chemical Research 2016, 49 (4) , 763-773. https://doi.org/10.1021/acs.accounts.6b00023
    35. Scott Habershon . Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling. Journal of Chemical Theory and Computation 2016, 12 (4) , 1786-1798. https://doi.org/10.1021/acs.jctc.6b00005
    36. Eleanor R. Nelsen, Anna C. Brezny, and Clark R. Landis . Interception and Characterization of Catalyst Species in Rhodium Bis(diazaphospholane)-Catalyzed Hydroformylation of Octene, Vinyl Acetate, Allyl Cyanide, and 1-Phenyl-1,3-butadiene. Journal of the American Chemical Society 2015, 137 (44) , 14208-14219. https://doi.org/10.1021/jacs.5b09858
    37. Yizhi Xiang, Roland Barbosa, Xiaonian Li, and Norbert Kruse . Ternary Cobalt–Copper–Niobium Catalysts for the Selective CO Hydrogenation to Higher Alcohols. ACS Catalysis 2015, 5 (5) , 2929-2934. https://doi.org/10.1021/acscatal.5b00388
    38. Marco Klähn and Marc V. Garland . On the Mechanism of the Catalytic Binuclear Elimination Reaction in Hydroformylation Systems. ACS Catalysis 2015, 5 (4) , 2301-2316. https://doi.org/10.1021/cs5019925
    39. Steven W. M. Crossley, Francis Barabé, and Ryan A. Shenvi . Simple, Chemoselective, Catalytic Olefin Isomerization. Journal of the American Chemical Society 2014, 136 (48) , 16788-16791. https://doi.org/10.1021/ja5105602
    40. Sebastian Schmidt, Peter Deglmann, and Peter Hofmann . Density Functional Investigations of the Rh-Catalyzed Hydroformylation of 1,3-Butadiene with Bisphosphite Ligands. ACS Catalysis 2014, 4 (10) , 3593-3604. https://doi.org/10.1021/cs500718v
    41. Yeonjoon Kim, Sunghwan Choi, and Woo Youn Kim . Efficient Basin-Hopping Sampling of Reaction Intermediates through Molecular Fragmentation and Graph Theory. Journal of Chemical Theory and Computation 2014, 10 (6) , 2419-2426. https://doi.org/10.1021/ct500136x
    42. Marcelo Vilches-Herrera, Lutz Domke, and Armin Börner . Isomerization–Hydroformylation Tandem Reactions. ACS Catalysis 2014, 4 (6) , 1706-1724. https://doi.org/10.1021/cs500273d
    43. Eleanor R. Nelsen and Clark R. Landis . Interception and Characterization of Alkyl and Acyl Complexes in Rhodium-Catalyzed Hydroformylation of Styrene. Journal of the American Chemical Society 2013, 135 (26) , 9636-9639. https://doi.org/10.1021/ja404799m
    44. Yizhi Xiang, Véronique Chitry, Peter Liddicoat, Peter Felfer, Julie Cairney, Simon Ringer, and Norbert Kruse . Long-Chain Terminal Alcohols through Catalytic CO Hydrogenation. Journal of the American Chemical Society 2013, 135 (19) , 7114-7117. https://doi.org/10.1021/ja402512r
    45. Olivier Diebolt, Hugo Tricas, Zoraida Freixa, and Piet W. N. M. van Leeuwen . Strong π-Acceptor Ligands in Rhodium-Catalyzed Hydroformylation of Ethene and 1-Octene: Operando Catalysis. ACS Catalysis 2013, 3 (2) , 128-137. https://doi.org/10.1021/cs300470u
    46. James M. Birbeck, Anthony Haynes, Harry Adams, Llewellyn Damoense, and Stefanus Otto . Ligand Effects on Reactivity of Cobalt Acyl Complexes. ACS Catalysis 2012, 2 (12) , 2512-2523. https://doi.org/10.1021/cs300589n
    47. Julien Schweicher, Adam Bundhoo, and Norbert Kruse . Hydrocarbon Chain Lengthening in Catalytic CO Hydrogenation: Evidence for a CO-Insertion Mechanism. Journal of the American Chemical Society 2012, 134 (39) , 16135-16138. https://doi.org/10.1021/ja3068484
    48. Satoshi Maeda and Keiji Morokuma . Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation. Journal of Chemical Theory and Computation 2012, 8 (2) , 380-385. https://doi.org/10.1021/ct200829p
    49. Treffly B. Ditri, Curtis E. Moore, Arnold L. Rheingold, and Joshua S. Figueroa . Oxidative Decarbonylation of m-Terphenyl Isocyanide Complexes of Molybdenum and Tungsten: Precursors to Low-Coordinate Isocyanide Complexes. Inorganic Chemistry 2011, 50 (20) , 10448-10459. https://doi.org/10.1021/ic2015868
    50. László T. Mika, Róbert Tuba, Imre Tóth, Stephan Pitter, and István T. Horváth . Molecular Mapping of the Catalytic Cycle of the Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene in the Presence of Pyridine in Methanol. Organometallics 2011, 30 (17) , 4751-4764. https://doi.org/10.1021/om200617q
    51. Roberta P. Dias and Willian R. Rocha . DFT Study of the Homogeneous Hydroformylation of Propene Promoted by a Heterobimetallic Pt–Sn Catalyst. Organometallics 2011, 30 (16) , 4257-4268. https://doi.org/10.1021/om1012067
    52. Chuanzhao Li, Feng Gao, Shuying Cheng, Martin Tjahjono, Martin van Meurs, Boon Ying Tay, Chacko Jacob, Liangfeng Guo, and Marc Garland . From Stoichiometric to Catalytic Binuclear Elimination in Rh–W Hydroformylations. Identification of Two New Heterobimetallic Intermediates. Organometallics 2011, 30 (16) , 4292-4296. https://doi.org/10.1021/om200306j
    53. Avery L. Watkins and Clark R. Landis. Origin of Pressure Effects on Regioselectivity and Enantioselectivity in the Rhodium-Catalyzed Hydroformylation of Styrene with (S,S,S)-BisDiazaphos. Journal of the American Chemical Society 2010, 132 (30) , 10306-10317. https://doi.org/10.1021/ja909619a
    54. Christian H. Beierlein and Bernhard Breit, Roberto A. Paz Schmidt and Dietmar A. Plattner. Online Monitoring of Hydroformylation Intermediates by ESI-MS. Organometallics 2010, 29 (11) , 2521-2532. https://doi.org/10.1021/om100131t
    55. Grant W. Margulieux, Nils Weidemann, David C. Lacy, Curtis E. Moore, Arnold L. Rheingold and Joshua S. Figueroa. Isocyano Analogues of [Co(CO)4]n: A Tetraisocyanide of Cobalt Isolated in Three States of Charge. Journal of the American Chemical Society 2010, 132 (14) , 5033-5035. https://doi.org/10.1021/ja1012382
    56. Gérard Cahiez and Alban Moyeux. Cobalt-Catalyzed Cross-Coupling Reactions. Chemical Reviews 2010, 110 (3) , 1435-1462. https://doi.org/10.1021/cr9000786
    57. Frédéric Hebrard and Philippe Kalck. Cobalt-Catalyzed Hydroformylation of Alkenes: Generation and Recycling of the Carbonyl Species, and Catalytic Cycle. Chemical Reviews 2009, 109 (9) , 4272-4282. https://doi.org/10.1021/cr8002533
    58. Juan P. Salinas-Olvera,, Rosa M. Gómez, and, Fernando Cortés-Guzmán. Structural Evolution:  Mechanism of Olefin Insertion in Hydroformylation Reaction. The Journal of Physical Chemistry A 2008, 112 (13) , 2906-2912. https://doi.org/10.1021/jp711200n
    59. Oz Gazit,, Nily Dan, and, Rina Tannenbaum. Nanocluster Nucleation and Growth in Polymeric Media Below the Glass Transition. Macromolecules 2008, 41 (6) , 2164-2171. https://doi.org/10.1021/ma071816o
    60. Manuel Sparta,, Knut J. Børve, and, Vidar R. Jensen. Activity of Rhodium-Catalyzed Hydroformylation:  Added Insight and Predictions from Theory. Journal of the American Chemical Society 2007, 129 (27) , 8487-8499. https://doi.org/10.1021/ja070395n
    61. Nily Dan,, Melissa Zubris, and, Rina Tannenbaum. Effect of Polymeric Media on the Kinetics of Nanocluster Nucleation and Growth. Macromolecules 2005, 38 (22) , 9243-9250. https://doi.org/10.1021/ma050564t
    62. Chun-Fang Huo,, Yong-Wang Li,, Matthias Beller, and, Haijun Jiao. Regioselective Hydroformylation of Butadiene:  Density Functional Studies. Organometallics 2005, 24 (15) , 3634-3643. https://doi.org/10.1021/om0500422
    63. Hongjian Sun,, Xiaoyan Li,, Hans-Friedrich Klein,, Ulrich Flörke, and, Hans-Jürgen Haupt. Reaction of Acyl(hydrido)cobalt(III) Complexes with (2-Diphenylphosphanyl)phenol and Influence of Chelating Ligands Containing Hard/Soft Donor Atoms on the Stability of Cobalt Complexes. Organometallics 2005, 24 (11) , 2612-2616. https://doi.org/10.1021/om0489960
    64. Rina Tannenbaum and, György Bor. Isotope Effects in the Hydroformylation of Olefins with Cobalt Carbonyls as Catalysts. The Journal of Physical Chemistry A 2004, 108 (34) , 7105-7111. https://doi.org/10.1021/jp048353y
    65. Chun-Fang Huo,, Yong-Wang Li,, Matthias Beller, and, Haijun Jiao. Acetylene Hydroformylation with HCo(CO)3 as Catalyst. A Density Functional Study. Organometallics 2004, 23 (4) , 765-773. https://doi.org/10.1021/om034212r
    66. S. King,, K. Hyunh, and, R. Tannenbaum. Kinetics of Nucleation, Growth, and Stabilization of Cobalt Oxide Nanoclusters. The Journal of Physical Chemistry B 2003, 107 (44) , 12097-12104. https://doi.org/10.1021/jp0355004
    67. Chun-Fang Huo,, Yong-Wang Li,, Matthias Beller, and, Haijun Jiao. HCo(CO)3-Catalyzed Propene Hydroformylation. Insight into Detailed Mechanism. Organometallics 2003, 22 (23) , 4665-4677. https://doi.org/10.1021/om0304863
    68. Chun-Fang Huo,, Yong-Wang Li,, Gui-Sheng Wu,, Matthias Beller, and, Haijun Jiao. Structures and Energies of [Co(CO)n]m (m = 0, 1+, 1−) and HCo(CO)n:  Density Functional Studies. The Journal of Physical Chemistry A 2002, 106 (50) , 12161-12169. https://doi.org/10.1021/jp0270710
    69. Markus Allmendinger,, Robert Eberhardt,, Gerrit Luinstra, and, Bernhard Rieger. The Cobalt-Catalyzed Alternating Copolymerization of Epoxides and Carbon Monoxide:  A Novel Approach to Polyesters. Journal of the American Chemical Society 2002, 124 (20) , 5646-5647. https://doi.org/10.1021/ja0256919
    70. Sor Koon Goh and, Dennis S. Marynick. The Carbonylation Reaction of CH3Co(CO)4:  A Detailed Density Functional Study. Organometallics 2002, 21 (11) , 2262-2267. https://doi.org/10.1021/om0200297
    71. Piet W. N. M. van Leeuwen,, Paul C. J. Kamer,, Joost N. H. Reek, and, Peter Dierkes. Ligand Bite Angle Effects in Metal-catalyzed C−C Bond Formation. Chemical Reviews 2000, 100 (8) , 2741-2770. https://doi.org/10.1021/cr9902704
    72. Maricel Torrent,, Miquel Solà, and, Gernot Frenking. Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance. Chemical Reviews 2000, 100 (2) , 439-494. https://doi.org/10.1021/cr980452i
    73. Peter Eilbracht,, Lars Bärfacker,, Christian Buss,, Christoph Hollmann,, Beate E. Kitsos-Rzychon,, Christian L. Kranemann,, Thorsten Rische,, Rafael Roggenbuck, and, Andreas Schmidt. Tandem Reaction Sequences under Hydroformylation Conditions:  New Synthetic Applications of Transition Metal Catalysis. Chemical Reviews 1999, 99 (11) , 3329-3366. https://doi.org/10.1021/cr970413r
    74. Jinhai Feng and, Marc Garland. The Unmodified Homogeneous Rhodium-Catalyzed Hydroformylation of Cyclohexene and the Search for Monometallic Catalytic Binuclear Elimination. Organometallics 1999, 18 (8) , 1542-1546. https://doi.org/10.1021/om980531k
    75. Dieter Gleich,, Rochus Schmid, and, Wolfgang A. Herrmann. A Combined QM/MM Method for the Determination of Regioselectivities in Rhodium-Catalyzed Hydroformylation. Organometallics 1998, 17 (22) , 4828-4834. https://doi.org/10.1021/om980459q
    76. Roberta Settambolo,, Simone Scamuzzi,, Aldo Caiazzo, and, Raffaello Lazzaroni. Opposite Chemoselectivity (Hydrogenation versus Carbonylation) Shown by 4-Vinylpyridine with Respect to 3-Vinylpyridine under Hydroformylation Conditions with Rh4(CO)12. Organometallics 1998, 17 (10) , 2127-2130. https://doi.org/10.1021/om970517s
    77. Miquel Solà and, Tom Ziegler. Theoretical Study on Acetaldehyde and Ethanol Elimination from the Hydrogenation of CH3(O)CCo(CO)3. Organometallics 1996, 15 (11) , 2611-2618. https://doi.org/10.1021/om950881w
    78. Annemiek van Rooy,, Paul C. J. Kamer,, Piet W. N. M. van Leeuwen,, Kees Goubitz,, Jan Fraanje,, Nora Veldman, and, Anthony L. Spek. Bulky Diphosphite-Modified Rhodium Catalysts:  Hydroformylation and Characterization. Organometallics 1996, 15 (2) , 835-847. https://doi.org/10.1021/om950549k
    79. Tanuja Tewari, Kishor V. Khopade, Samir H. Chikkali. Rh‐Catalyzed Asymmetric Hydroformylation: The Case of Substituted and Heterocyclic Olefins. ChemCatChem 2025, 107 https://doi.org/10.1002/cctc.202500979
    80. Yuqing Wang, Miao Jiang, Na Liu, Tian Tian, Changdao Li, Zhao Sun, Gewen Yu, Yanming Wang, Wenxiu He, Jian Ding, Li Yan, Yunjie Ding. Constructing nitrogen-doped porous organic polymer- supported single-atom cobalt catalysts for highly efficient hydroformylation of internal olefins. Chemical Engineering Journal 2025, 520 , 166057. https://doi.org/10.1016/j.cej.2025.166057
    81. Zhenhao Du, Wenxin Lu, Qinglei Chong, Fanke Meng. Cobalt-Catalyzed Regioselective Hydroformylation of Allylic Alcohol Esters. Synthesis 2025, 57 (16) , 2434-2443. https://doi.org/10.1055/a-2515-0227
    82. Luyun Zhang, Ding Liu, Huri Piao, Zhenhua Jia, Fen-Er Chen. A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes. Chinese Chemical Letters 2025, 36 (7) , 110640. https://doi.org/10.1016/j.cclet.2024.110640
    83. Dengke Lv, Zerong Zhang, Ying-Ya Liu, Zhichao Sun, Anjie Wang, Chong Peng. Recent advances in microenvironmental regulation for heterogeneous olefin hydroformylation. Chemical Engineering Journal 2025, 515 , 163839. https://doi.org/10.1016/j.cej.2025.163839
    84. Rupali S. Prajapati, Bhalchandra M. Bhanage. One-pot hydroformylation/hydrogenation of bio-renewable (R)-carvone in a recyclable Rh-catalyzed aqueous biphasic medium: Targeting dual remote sites with a single catalyst. Molecular Catalysis 2025, 580 , 115102. https://doi.org/10.1016/j.mcat.2025.115102
    85. Shu‐Yuan Tian, Lin Shi, Jun‐Hui Zhu, Li Li, Fei Ye, Zheng Xu, Li‐Wen Xu. Regioselective Synthesis of n ‐Nonanal and Aldehyde‐Containing Polysiloxanes via Rh‐Catalyzed Hydroformylation Enhanced by A New Silicon‐Tethered Multidentate Phosphine Ligand. European Journal of Organic Chemistry 2025, 28 (16) https://doi.org/10.1002/ejoc.202500020
    86. Chao-an Liang, Bo Zeng, Baolin Feng, Huibing Shi, Fengqi Zhang, Jianhua Liu, Lin He, Yuxiao Ding, Chungu Xia. Heterogeneous Co-based catalytic systems for alkene hydroformylation. Chinese Journal of Catalysis 2025, 70 , 115-141. https://doi.org/10.1016/S1872-2067(24)60238-X
    87. Priyanka Chakraborty, Rajib Mandal, Basker Sundararaju. Cobalt‐Catalyzed Carbonylation Reactions. 2025, 1-47. https://doi.org/10.1002/9780470682531.pat0988
    88. Tamara Papp, Péter R. Nagy, Tamás Kégl. Advanced computation of enthalpies for a range of hydroformylation reactions with a predictive power to match experiments. Chemical Physics Letters 2025, 861 , 141833. https://doi.org/10.1016/j.cplett.2024.141833
    89. Subhayan Dey, Lea Dettling, Dalma Gál, Clemens Bruhn, Zsolt Kelemen, Christian Müller, Rudolf Pietschnig. Tuning the sterics: Rh-catalyzed hydroformylation reactions with ferrocene based diphosphorus ligands. Journal of Catalysis 2025, 442 , 115871. https://doi.org/10.1016/j.jcat.2024.115871
    90. Rupali S. Prajapati, Bhalchandra M. Bhanage. Hydroformylation, hydroaminomethylation and related tandem reactions of bio-derived renewable olefins: a step closer to sustainability. RSC Sustainability 2025, 3 (1) , 158-207. https://doi.org/10.1039/D4SU00662C
    91. Mark A. Murphy. Historical Background and Development of Green and Sustainable Chemistry. 2025, 1-16. https://doi.org/10.1016/B978-0-443-15742-4.00093-4
    92. Zachary W. Meduna, Daniel K. Schwartz, J. Will Medlin. Support modification by phosphonic acid ligands controls ethylene hydroformylation on single-atom rhodium sites. Catalysis Science & Technology 2025, 55 https://doi.org/10.1039/D5CY00684H
    93. Wenlong Wang, Cunyao Li, Wenhao Wang, Yuqin Qiu, Hongguang Liu, Jinlong Lu, Yizhou Zhan, Li Yan, Yunjie Ding. Modular synthesis of triphenylphosphine-derived cage ligands for rhodium-catalyzed hydroformylation applications. Dalton Transactions 2024, 54 (1) , 207-214. https://doi.org/10.1039/D4DT02627F
    94. Rupali S. Prajapati, Bhalchandra M. Bhanage. Highly chemoselective and regiospecific Rh-catalyzed single-step hydroformylation of biomass derived (R)-carvone. Molecular Catalysis 2024, 569 , 114607. https://doi.org/10.1016/j.mcat.2024.114607
    95. Yuqing Wang, Miao Jiang, Tian Tian, Zhao Sun, Gangqiang Wu, Yanming Wang, Xiaohui Guo, Wenxiu He, Jian Ding, Li Yan, Yunjie Ding. A highly active phosphine oxides-containing porous organic polymer supported Co catalyst for hydroformylation of 2-octene. Molecular Catalysis 2024, 567 , 114459. https://doi.org/10.1016/j.mcat.2024.114459
    96. Jan‐Christian Raabe, Lea Hombach, Maximilian J. Poller, Alberto Collauto, Maxie M. Roessler, Andreas Vorholt, Anna Katharina Beine, Jakob Albert. Synthesis and Characterization of Co(II) Substituted Keggin‐Type Polyoxometalates as Novel Catalysts for the Hydroformylation of 1‐Hexene in a Thermomorphic Solvent System. ChemCatChem 2024, 16 (16) https://doi.org/10.1002/cctc.202400395
    97. Bidyut Bikash Sarma, Dominik Neukum, Dmitry E. Doronkin, Ajai Raj Lakshmi Nilayam, Lorena Baumgarten, Bärbel Krause, Jan-Dierk Grunwaldt. Understanding the role of supported Rh atoms and clusters during hydroformylation and CO hydrogenation reactions with in situ / operando XAS and DRIFT spectroscopy. Chemical Science 2024, 15 (31) , 12369-12379. https://doi.org/10.1039/D4SC02907K
    98. Ying Zheng, Qi Yang, Sikai Wang, Shinya Furukawa, Maoshuai Li, Ning Yan, Xinbin Ma. Adjacent MnOx clusters enhance the hydroformylation activity of rhodium single-atom catalysts. Applied Catalysis B: Environment and Energy 2024, 350 , 123923. https://doi.org/10.1016/j.apcatb.2024.123923
    99. Rupali S. Prajapati, Anant R. Kapdi, Rajesh Sahu, Bhalchandra M. Bhanage. Selectivity tuning using Rh/PTABS catalytic system for the hydroformylation of eugenol. Catalysis Today 2024, 438 , 114804. https://doi.org/10.1016/j.cattod.2024.114804
    100. Ying Zheng, Qi Yang, Sikai Wang, Shinya Furukawa, Pengfei Wang, Maoshuai Li, Ning Yan, Xinbin Ma. Enhanced regioselectivity in propylene hydroformylation using Xantphos-modified single-atom Rh/CeO2 catalyst. Journal of Catalysis 2024, 431 , 115394. https://doi.org/10.1016/j.jcat.2024.115394
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1961, 83, 19, 4023–4027
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja01480a017
    Published October 1, 1961

    Article Views

    3941

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.