Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/9c1c692fda57c8d6ed795305891b19f6.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Iron Catalyzed Hydroformylation of Alkenes under Mild Conditions: Evidence of an Fe(II) Catalyzed Process | Journal of the American Chemical Society
    Article

    Iron Catalyzed Hydroformylation of Alkenes under Mild Conditions: Evidence of an Fe(II) Catalyzed Process
    Click to copy article linkArticle link copied!

    • Swechchha Pandey
      Swechchha Pandey
      Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
    • K. Vipin Raj
      K. Vipin Raj
      Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
      More by K. Vipin Raj
    • Dinesh R. Shinde
      Dinesh R. Shinde
      Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
    • Kumar Vanka
      Kumar Vanka
      Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
      More by Kumar Vanka
    • Varchaswal Kashyap
      Varchaswal Kashyap
      Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
    • Sreekumar Kurungot
      Sreekumar Kurungot
      Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
    • C. P. Vinod
      C. P. Vinod
      Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
      More by C. P. Vinod
    • Samir H. Chikkali*
      Samir H. Chikkali
      Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
      Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110001, India
      *[email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 12, 4430–4439
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b01286
    Published March 11, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Earth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions. This protocol operates at 10–30 bar syngas pressure below 100 °C, utilizes readily available ligands, and applies to an array of olefins. Thus, the iron precursor [HFe(CO)4][Ph3PNPPh3]+ (1) in the presence of triphenyl phosphine catalyzes the hydroformylation of 1-hexene (S2), 1-octene (S1), 1-decene (S3), 1-dodecene (S4), 1-octadecene (S5), trimethoxy(vinyl)silane (S6), trimethyl(vinyl)silane (S7), cardanol (S8), 2,3-dihydrofuran (S9), allyl malonic acid (S10), styrene (S11), 4-methylstyrene (S12), 4-iBu-styrene (S13), 4-tBu-styrene (S14), 4-methoxy styrene (S15), 4-acetoxy styrene (S16), 4-bromo styrene (S17), 4-chloro styrene (S18), 4-vinylbenzonitrile (S19), 4-vinylbenzoic acid (S20), and allyl benzene (S21) to corresponding aldehydes in good to excellent yields. Both electron donating and electron withdrawing substituents could be tolerated and excellent conversions were obtained for S11–S20. Remarkably, the addition of 1 mol % acetic acid promotes the reaction to completion within 16–24 h. Detailed mechanistic investigations revealed in situ formation of an iron-dihydride complex [H2Fe(CO)2(PPh3)2] (A) as an active catalytic species. This finding was further supported by cyclic voltammetry investigations and intermediacy of an Fe(0)–Fe(II) species was established. Combined experimental and computational investigations support the existence of an iron-dihydride as the catalyst resting state, which then follows a Fe(II) based catalytic cycle to produce aldehyde.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b01286.

    • Synthetic procedures, detailed screening tables, characterization data, computational details, NMR spectra, GC chromatograms, control experiments, cyclic voltammetry (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 52 publications.

    1. Yisicheng Wang, Panpan Bao, Xiaojuan Dong, Yu Lan, Yiyun Chen. Thiophenol-Catalyzed Radical Hydroformylation of Unactivated Sterically Hindered Alkenes. Journal of the American Chemical Society 2025, 147 (35) , 31662-31670. https://doi.org/10.1021/jacs.5c07415
    2. Zhikuan Lin, Haijun Guo, Yifan Ma, Hairong Zhang, Lian Xiong, Jian Li, Fen Peng, Mengkun Wang, Yuxuan Liu, Xinde Chen. Directly and Continuously Hydration of Higher Olefins to Higher Alcohols over an Amphiphilic Hollow HZSM-5 Zeolite Catalyst. Langmuir 2025, 41 (32) , 21800-21815. https://doi.org/10.1021/acs.langmuir.5c02950
    3. Sourav Ghoshal, Yong Yuan, Chidozie Ezeakunne, Adyasa Priyadarsini, Jingguang G. Chen, Shyam Kattel. Unraveling the Structural Sensitivity of Metal Catalysts in Ethylene Hydroformylation: Insights from Theory and Experiments. ACS Catalysis 2025, 15 (14) , 12325-12339. https://doi.org/10.1021/acscatal.5c03349
    4. Manisha Manisha, Sangeeta Kumari, Deepak Sharma, Lalit Negi, Raj K. Joshi. Iron-Catalyzed Chemoselective Transfer Hydrogenation of α,β-Unsaturated Ketones Using H2O as a Surrogate of Hydrogen. The Journal of Organic Chemistry 2024, 89 (17) , 11983-11993. https://doi.org/10.1021/acs.joc.4c00601
    5. Subhash Garhwal, Yuyang Dong, Binh Khanh Mai, Peng Liu, Stephen L. Buchwald. CuH-Catalyzed Regio- and Enantioselective Formal Hydroformylation of Vinyl Arenes. Journal of the American Chemical Society 2024, 146 (20) , 13733-13740. https://doi.org/10.1021/jacs.4c04287
    6. Shao-Yu Lo, Carlton P. Folster, Robin P. Harkins, Ryan J. Anderson, Yu-Ling Lien, Hsin-Chun Chiu, Alex E. Carpenter, Ian A. Tonks. Carbonylative Co- and Terpolymerizations of 10-Undecen-1-ol: A Route to Polyketoesters with Tunable Compositions. ACS Catalysis 2022, 12 (23) , 14629-14636. https://doi.org/10.1021/acscatal.2c03984
    7. Yiwei Dai, Jingqing Lyu, Linhui Zhu, Briana R. Schrage, Christopher J. Ziegler, Li Jia. Zwitterionic Iron(II) Compounds: Synthesis, Reactivity, and Catalytic Carbonylative Polymerization of Cyclic Ethers. Organometallics 2021, 40 (20) , 3361-3364. https://doi.org/10.1021/acs.organomet.1c00463
    8. Yang Zhang, Sebastian Torker, Michel Sigrist, Nikola Bregović, Paweł Dydio. Binuclear Pd(I)–Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes. Journal of the American Chemical Society 2020, 142 (42) , 18251-18265. https://doi.org/10.1021/jacs.0c09254
    9. Stephen de Doncker, Anna Casimiro, Izak A. Kotze, Siyabonga Ngubane, Gregory S. Smith. Bimetallic Paddlewheel-type Dirhodium(II,II) Acetate and Formamidinate Complexes: Synthesis, Structure, Electrochemistry, and Hydroformylation Activity. Inorganic Chemistry 2020, 59 (17) , 12928-12940. https://doi.org/10.1021/acs.inorgchem.0c02020
    10. Anitha Alanthadka, Sourajit Bera, Debasis Banerjee. Iron-Catalyzed Ligand Free α-Alkylation of Methylene Ketones and β-Alkylation of Secondary Alcohols Using Primary Alcohols. The Journal of Organic Chemistry 2019, 84 (18) , 11676-11686. https://doi.org/10.1021/acs.joc.9b01600
    11. Hao Jiang, Wenzhen Lai, Hui Chen. Generation of Carbon Radical from Iron-Hydride/Alkene: Exchange-Enhanced Reactivity Selects the Reactive Spin State. ACS Catalysis 2019, 9 (7) , 6080-6086. https://doi.org/10.1021/acscatal.9b01691
    12. Thomas Verheyen, Niccolò Santillo, Davide Marinelli, Elena Petricci, Wim M. De Borggraeve, Luigi Vaccaro, Mario Smet. An Effective and Reusable Hyperbranched Polymer Immobilized Rhodium Catalyst for the Hydroformylation of Olefins. ACS Applied Polymer Materials 2019, 1 (6) , 1496-1504. https://doi.org/10.1021/acsapm.9b00240
    13. Tanuja Tewari, Kishor V. Khopade, Samir H. Chikkali. Rh‐Catalyzed Asymmetric Hydroformylation: The Case of Substituted and Heterocyclic Olefins. ChemCatChem 2025, 107 https://doi.org/10.1002/cctc.202500979
    14. Kangkang Sun, Guo‐Ping Lu, Wei Han, Matthias Beller. Iron‐Catalyzed Carbonylation Reactions with Carbon Monoxide. Angewandte Chemie 2025, 137 (36) https://doi.org/10.1002/ange.202512346
    15. Kangkang Sun, Guo‐Ping Lu, Wei Han, Matthias Beller. Iron‐Catalyzed Carbonylation Reactions with Carbon Monoxide. Angewandte Chemie International Edition 2025, 64 (36) https://doi.org/10.1002/anie.202512346
    16. Yuxuan Zhou, Siquan Feng, Cunyao Li, Xiangen Song, Li Yan, Yunjie Ding, Xue-Qing Gong. Propylene hydroformylation catalyzed by rhodium-based catalysts with phosphine-sulfur ligands: a combined theoretical and experimental study. Physical Chemistry Chemical Physics 2025, 27 (25) , 13527-13533. https://doi.org/10.1039/D5CP01439E
    17. Sandip Munshi, Raphaël Ravel-Massol, Ricardo Garcia-Serres, Nicolas Suaud, Rémi Maurice, Nathalie Saffon-Merceron, Nicolas Mézailles, Marie Fustier-Boutignon. Freed from iron: easy release of a stable ketene from the reaction of CO with di-iron bis-μ 2 -alkylidenes. Chemical Communications 2025, 61 (48) , 8687-8690. https://doi.org/10.1039/D5CC02019K
    18. Tanuja Tewari, Maulali H. Shaikh, Himanshu Sharma, Kumar Vanka, Samir H. Chikkali. Iron‐Catalyzed Chemoselective Reduction of Enimines to N‐Allylic Amines via Hydrosilylation. Asian Journal of Organic Chemistry 2025, 14 (5) https://doi.org/10.1002/ajoc.202400762
    19. Chao-an Liang, Bo Zeng, Baolin Feng, Huibing Shi, Fengqi Zhang, Jianhua Liu, Lin He, Yuxiao Ding, Chungu Xia. Heterogeneous Co-based catalytic systems for alkene hydroformylation. Chinese Journal of Catalysis 2025, 70 , 115-141. https://doi.org/10.1016/S1872-2067(24)60238-X
    20. Tamara Papp, Péter R. Nagy, Tamás Kégl. Advanced computation of enthalpies for a range of hydroformylation reactions with a predictive power to match experiments. Chemical Physics Letters 2025, 861 , 141833. https://doi.org/10.1016/j.cplett.2024.141833
    21. Lukas Miller, Felix Bauer, Bernhard Breit. Ambient Pressure Hydroformylation – A Key Step to Meso ‐Alkyl BODIPYs. European Journal of Organic Chemistry 2025, 28 (3) https://doi.org/10.1002/ejoc.202401089
    22. Rohit Kumar, Tanuja Tewari, Samir H. Chikkali. Iron in Organometallic Transformations: A Sustainable Substitute for Noble Metals. ChemCatChem 2024, 960 https://doi.org/10.1002/cctc.202400756
    23. Yifeng Liu, Zhiqiang Liu, Yu Hui, Liang Wang, Jian Zhang, Xianfeng Yi, Wei Chen, Chengtao Wang, Hai Wang, Yucai Qin, Lijuan Song, Anmin Zheng, Feng-Shou Xiao. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38181-6
    24. Qian Wang, Xu Li, Jinxiang Dong. Synthesis and surface properties of branched-chain tertiary fatty alcohol sulfate surfactants. Tenside Surfactants Detergents 2023, 60 (6) , 569-587. https://doi.org/10.1515/tsd-2023-2534
    25. Gong Zeng, Kun Liang, Yuena Huang, Chuang Liu, Hangning Chen, Dongrun Wang, Jiantai Ma, Zhengping Dong. Rh nanoparticles anchored on phosphorous-doped porous carbon for efficiently catalytic hydroformylation of alkenes. Molecular Catalysis 2023, 550 , 113548. https://doi.org/10.1016/j.mcat.2023.113548
    26. Maxim R. Radzhabov, Neal P. Mankad. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chemical Communications 2023, 59 (80) , 11932-11946. https://doi.org/10.1039/D3CC03078D
    27. Tanuja Tewari, Rohit Kumar, Samir H. Chikkali. Iron-catalysed highly selective hydroalkoxycarbonylation of alkynes using CO as C1 source. Catalysis Science & Technology 2023, 13 (19) , 5549-5555. https://doi.org/10.1039/D3CY00843F
    28. Anirban Sen, Rohit Kumar, Tanuja Tewari, Rajesh G. Gonnade, Samir H. Chikkali. Iron‐Catalyzed Alkoxylation, Dehydrogenative‐Polymerization and Tandem Hydrosilylative‐Alkoxylation. Chemistry – A European Journal 2023, 29 (48) https://doi.org/10.1002/chem.202301375
    29. Felix Bauer, Niklas Dierenbach, Bernhard Breit. A Highly Active Hydroformylation Catalyst Using a Self‐Assembling Bis ‐ N ‐Pyrrolyl Phosphine Ligand. Asian Journal of Organic Chemistry 2023, 12 (7) https://doi.org/10.1002/ajoc.202300244
    30. Munsaf Ali, Avinash K. Srivastava, Nitinkumar Satyadev Upadhyay, Naveen Satrawala, Raj K. Joshi. Facile Photochemical/Thermal Assisted Hydration of Alkynes Catalysed under Aqueous Media by a Chalcogen Stabilized, Robust, Economical, and Reusable Fe3Se2(CO)9 Cluster. Organics 2023, 4 (2) , 251-264. https://doi.org/10.3390/org4020020
    31. Tanuja Tewari, Rohit Kumar, Samir H. Chikkali. Iron‐Catalyzed Magnesium‐Mediated Formal Hydroformylation of Alkynes and Alkenes. ChemCatChem 2023, 15 (3) https://doi.org/10.1002/cctc.202201394
    32. Francisco Javier Escobar‐Bedia, Vlad Martin‐Diaconescu, Laura Simonelli, Maria J. Sabater, Patricia Concepción. Chitosan‐Silica as a Cheap Carrier and Green Soft Ligand for Improved Ru‐catalyzed Hydroformylation. ChemCatChem 2022, 14 (24) https://doi.org/10.1002/cctc.202200861
    33. Purushothaman Rajeshwaran, Jonathan Trouvé, Khalil Youssef, Rafael Gramage‐Doria. Sustainable Wacker‐Type Oxidations. Angewandte Chemie 2022, 134 (50) https://doi.org/10.1002/ange.202211016
    34. Purushothaman Rajeshwaran, Jonathan Trouvé, Khalil Youssef, Rafael Gramage‐Doria. Sustainable Wacker‐Type Oxidations. Angewandte Chemie International Edition 2022, 61 (50) https://doi.org/10.1002/anie.202211016
    35. Baiyin Wei, Xiaofang Liu, Qingyu Chang, Shenggang Li, Hu Luo, Kaimin Hua, Shunan Zhang, Junjun Chen, Zilong Shao, Chaojie Huang, Hui Wang, Yuhan Sun. Single-atom gold species within zeolite for efficient hydroformylation. Chem Catalysis 2022, 2 (8) , 2066-2076. https://doi.org/10.1016/j.checat.2022.06.008
    36. Kaiwu Dong, Kuiling Ding. Recent Hydrocarbonylation of Unsaturated Hydrocarbons with Homogeneous Catalyst. 2022, 325-414. https://doi.org/10.1002/9783527831883.ch8
    37. Peng Gao, Miaolin Ke, Tong Ru, Guanfeng Liang, Fen-Er Chen. Synthesis of rac- α -aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. Chinese Chemical Letters 2022, 33 (2) , 830-834. https://doi.org/10.1016/j.cclet.2021.07.068
    38. Rohit Kumar, Samir H. Chikkali. Hydroformylation of olefins by metals other than rhodium. Journal of Organometallic Chemistry 2022, 960 , 122231. https://doi.org/10.1016/j.jorganchem.2021.122231
    39. Minghao Wang, Alexander Lu, Vy M. Dong. Hydroformylation: Alternatives to Rh and Syn-gas. 2022, 194-220. https://doi.org/10.1016/B978-0-12-820206-7.00093-7
    40. Peng Gao, Guanfeng Liang, Tong Ru, Xiaoyan Liu, Haifeng Qi, Aiqin Wang, Fen-Er Chen. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25061-0
    41. Yang Zhang, Michel Sigrist, Paweł Dydio. Palladium‐Catalyzed Hydroformylation of Alkenes and Alkynes. European Journal of Organic Chemistry 2021, 2021 (44) , 5985-5997. https://doi.org/10.1002/ejoc.202101020
    42. Yingtang Ning, Tomohiko Ohwada, Fen-Er Chen. Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. Green Synthesis and Catalysis 2021, 2 (3) , 247-266. https://doi.org/10.1016/j.gresc.2021.04.008
    43. Francesca Migliorini, Filippo Dei, Massimo Calamante, Samuele Maramai, Elena Petricci. Micellar Catalysis for Sustainable Hydroformylation. ChemCatChem 2021, 13 (12) , 2794-2806. https://doi.org/10.1002/cctc.202100181
    44. Tanuja Tewari, Rohit Kumar, Amol C. Chandanshive, Samir H. Chikkali. Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account. The Chemical Record 2021, 21 (5) , 1182-1198. https://doi.org/10.1002/tcr.202100007
    45. Avinash K. Srivastava, Charu Sharma, Raj K. Joshi. Cp*Co( iii ) and Cu(OAc) 2 bimetallic catalysis for Buchwald-type C–N cross coupling of aryl chlorides and amines under base, inert gas & solvent-free conditions. Green Chemistry 2020, 22 (23) , 8248-8253. https://doi.org/10.1039/D0GC02819C
    46. Zhenhua Xie, Yuanguo Xu, Meng Xie, Xiaobo Chen, Ji Hoon Lee, Eli Stavitski, Shyam Kattel, Jingguang G. Chen. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15849-x
    47. Charu Sharma, Avinash Kumar Srivastava, Aditi Soni, Sangeeta Kumari, Raj Kumar Joshi. CO-free, aqueous mediated, instant and selective reduction of nitrobenzene via robustly stable chalcogen stabilised iron carbonyl clusters (Fe 3 E 2 (CO) 9 , E = S, Se, Te). RSC Advances 2020, 10 (54) , 32516-32521. https://doi.org/10.1039/D0RA04491A
    48. Jacek Malinowski, Dominika Zych, Dagmara Jacewicz, Barbara Gawdzik, Joanna Drzeżdżon. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry—A Review. International Journal of Molecular Sciences 2020, 21 (15) , 5443. https://doi.org/10.3390/ijms21155443
    49. Avinash K. Srivastava, Munsaf Ali, Shepherd Siangwata, Naveen Satrawala, Gregory S. Smith, Raj K. Joshi. Multitasking FeOCN Composite as an Economic, Heterogeneous Catalyst for 1‐Octene Hydroformylation and Hydration Reactions. Asian Journal of Organic Chemistry 2020, 9 (3) , 377-384. https://doi.org/10.1002/ajoc.201900649
    50. Drew M. Hood, Ryan A. Johnson, Alex E. Carpenter, Jarod M. Younker, David J. Vinyard, George G. Stanley. Highly active cationic cobalt(II) hydroformylation catalysts. Science 2020, 367 (6477) , 542-548. https://doi.org/10.1126/science.aaw7742
    51. Huiling Chen, Xiaochen Yue, Jun Yang, Chunxia Lv, Shuaiwei Dong, Xuefeng Luo, Zhiyong Sun, Ying Zhang, Baoxiang Li, Faping Zhang, Haiping Gu, Yafeng Yang, Qiuling Zhang, Shengbo Ge, Huitao Bi, Dongfang Zheng, Yong Zhao, Cheng Li, Wanxi Peng. Pyrolysis molecule of Torreya grandis bark for potential biomedicine. Saudi Journal of Biological Sciences 2019, 26 (4) , 808-815. https://doi.org/10.1016/j.sjbs.2019.01.005
    52. Ya Chen, Penghe Su, Xiaotong Liu, Hongchi Liu, Baolin Zhu, Shoumin Zhang, Weiping Huang. Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts 2018, 8 (10) , 420. https://doi.org/10.3390/catal8100420

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 12, 4430–4439
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b01286
    Published March 11, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.