Notice: file_put_contents(): Write of 260213 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2 + 2 + 1] Pyrrole Synthesis from Alkynes and Azobenzene | Journal of the American Chemical Society
    Article

    Mechanism of Ti-Catalyzed Oxidative Nitrene Transfer in [2 + 2 + 1] Pyrrole Synthesis from Alkynes and Azobenzene
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 23, 7267–7281
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b03546
    Published May 15, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally TiII/TiIV redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion. Computations support this kinetic analysis, provide insights into the structure of the active species in catalysis and the roles of solvent, and provide a new mechanism for regeneration of the Ti imido catalyst via disproportionation. Reductive elimination from a 6-membered azatitanacyclohexadiene species to generate pyrrole-bound TiII is surprisingly facile and occurs through a unique electrocyclic reductive elimination pathway similar to a Nazarov cyclization. The resulting TiII species are stabilized through backbonding into the π* of the pyrrole framework, although solvent effects also significantly stabilize free TiII species that are required for pyrrole loss and catalytic turnover. Further computational and kinetic analysis reveals that in complex reactions with unysmmetric alkynes the resulting pyrrole regioselectivity is driven primarily by steric effects for terminal alkynes and inductive effects for internal alkynes.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b03546.

    • Full experimental, kinetic, and computational details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 86 publications.

    1. Ross F. Koby, Ian A. Tonks. Alkyne Carboamination with Imines Catalyzed by [py2TiCl2N(p-tol)]2. Organometallics 2025, 44 (3) , 477-482. https://doi.org/10.1021/acs.organomet.4c00499
    2. Kathryn J. Rynders, Daniel N. Huh, Zoe E. Stuart, Zoua Pa Vang, Ian A. Tonks. Flash Communication: Ti-Catalyzed “Interrupted” Cascading Hydroamination of 1,6- and 1,7-En-ynes. Organometallics 2024, 43 (18) , 1952-1955. https://doi.org/10.1021/acs.organomet.4c00354
    3. J. Drake Johnson, Andrew J. King, Fu-Sheng Wang, Aleksandr V. Zhukhovitskiy. Six-Membered Iridacycles with Five Nitrogen Atoms in the Ring. Organometallics 2024, 43 (14) , 1593-1599. https://doi.org/10.1021/acs.organomet.4c00163
    4. Hayato Tsurugi, Takuya Akiyama, Connor W. Frye, Yuya Kakiuchi, Kazushi Mashima, Ian A. Tonks. Evaluation of Tungsten Catalysis among Early Transition Metals for N-Aryl-2,3,4,5-tetraarylpyrrole Synthesis: Modular Access to N-Doped π-Conjugated Material Precursors. Inorganic Chemistry 2024, 63 (6) , 3037-3046. https://doi.org/10.1021/acs.inorgchem.3c03858
    5. Tobias Kaper, Connor W. Frye, Ian A. Tonks. Ti-Catalyzed Multicomponent Synthesis of Pyrroles Using Allene Coupling Partners. Organometallics 2023, 42 (13) , 1459-1464. https://doi.org/10.1021/acs.organomet.3c00195
    6. Corey A. Richards, Nigam P. Rath, Jamie M. Neely. Isolation and Reactivity of an Iron Azametallacyclobutene Complex. Organometallics 2022, 41 (14) , 1763-1768. https://doi.org/10.1021/acs.organomet.2c00151
    7. Juan Camilo Arango-Daza, Carles Lluna-Galán, Luis Izquierdo-Aranda, Jose R. Cabrero-Antonino, Rosa Adam. Heterogeneous Pd-Catalyzed Efficient Synthesis of Imidazolones via Dehydrogenative Condensation between Ureas and 1,2-Diols. ACS Catalysis 2022, 12 (12) , 6906-6922. https://doi.org/10.1021/acscatal.2c01423
    8. Folkert de Vries, Edwin Otten. Reversible On/Off Switching of Lactide Cyclopolymerization with a Redox-Active Formazanate Ligand. ACS Catalysis 2022, 12 (7) , 4125-4130. https://doi.org/10.1021/acscatal.1c05689
    9. Christian Schumacher, Claude Molitor, Sabrina Smid, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm. Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC. The Journal of Organic Chemistry 2021, 86 (20) , 14213-14222. https://doi.org/10.1021/acs.joc.1c01529
    10. Shingyo Sueyoshi, Tsuyoshi Taniguchi, Saki Tanaka, Hitoshi Asakawa, Tatsuya Nishimura, Katsuhiro Maeda. Understanding the Polymerization of Diphenylacetylenes with Tantalum(V) Chloride and Cocatalysts: Production of Cyclic Poly(diphenylacetylene)s by Low-Valent Tantalum Species Generated in Situ. Journal of the American Chemical Society 2021, 143 (39) , 16136-16146. https://doi.org/10.1021/jacs.1c06811
    11. Ian A. Tonks. Ti-Catalyzed and -Mediated Oxidative Amination Reactions. Accounts of Chemical Research 2021, 54 (17) , 3476-3490. https://doi.org/10.1021/acs.accounts.1c00368
    12. Ze-Jie Lv, Zhengqi Chai, Miaomiao Zhu, Junnian Wei, Wen-Xiong Zhang. Selective Coupling of Lanthanide Metallacyclopropenes and Nitriles via Azametallacyclopentadiene and η2-Pyrimidine Metallacycle. Journal of the American Chemical Society 2021, 143 (24) , 9151-9161. https://doi.org/10.1021/jacs.1c03604
    13. Franz-Lucas Haut, Niklas J. Feichtinger, Immanuel Plangger, Lukas A. Wein, Mira Müller, Tim-Niclas Streit, Klaus Wurst, Maren Podewitz, Thomas Magauer. Synthesis of Pyrroles via Consecutive 6π-Electrocyclization/Ring-Contraction of Sulfilimines. Journal of the American Chemical Society 2021, 143 (24) , 9002-9008. https://doi.org/10.1021/jacs.1c04835
    14. Shouang Lan, Rui Liu, Xiangwen Kong, Jinggong Liu, Benlong Luo, Shuang Yang, Xinqiang Fang. Ti(OiPr)4-Facilitated Formal Deoxygenative Annulation of Alkynyl 1,2-Diketones for the Synthesis of Highly Functionalized Furans. Organic Letters 2021, 23 (4) , 1504-1509. https://doi.org/10.1021/acs.orglett.1c00291
    15. Anders Reinholdt, Daniel Pividori, Alexander L. Laughlin, Ida M. DiMucci, Samantha N. MacMillan, Mehrafshan G. Jafari, Michael R. Gau, Patrick J. Carroll, J. Krzystek, Andrew Ozarowski, Joshua Telser, Kyle M. Lancaster, Karsten Meyer, Daniel J. Mindiola. A Mononuclear and High-Spin Tetrahedral TiII Complex. Inorganic Chemistry 2020, 59 (24) , 17834-17850. https://doi.org/10.1021/acs.inorgchem.0c02586
    16. Xin Yi See, Xuelan Wen, T. Alexander Wheeler, Channing K. Klein, Jason D. Goodpaster, Benjamin R. Reiner, Ian A. Tonks. Iterative Supervised Principal Component Analysis Driven Ligand Design for Regioselective Ti-Catalyzed Pyrrole Synthesis. ACS Catalysis 2020, 10 (22) , 13504-13517. https://doi.org/10.1021/acscatal.0c03939
    17. Malte Fischer, Marie Christin Wolff, Estefanía del Horno, Marc Schmidtmann, Rüdiger Beckhaus. Synthesis, Reactivity, and Insights into the Lewis Acidity of Mononuclear Titanocene Imido Complexes Bearing Sterically Demanding Terphenyl Moieties. Organometallics 2020, 39 (17) , 3232-3239. https://doi.org/10.1021/acs.organomet.0c00452
    18. A. Ziółkowska, N. Szynkiewicz, J. Pikies, Ł. Ponikiewski. Solvent Impact on the Diversity of Products in the Reaction of Lithium Diphenylphosphide and a Ti(III) Complex Supported by a tBu2P–P(SiMe3) Ligand. Inorganic Chemistry 2020, 59 (16) , 11305-11315. https://doi.org/10.1021/acs.inorgchem.0c00824
    19. Evan P. Beaumier, Christopher P. Gordon, Robin P. Harkins, Meghan E. McGreal, Xuelan Wen, Christophe Copéret, Jason D. Goodpaster, Ian A. Tonks. Cp2Ti(κ2-tBuNCNtBu): A Complex with an Unusual κ2 Coordination Mode of a Heterocumulene Featuring a Free Carbene. Journal of the American Chemical Society 2020, 142 (17) , 8006-8018. https://doi.org/10.1021/jacs.0c02487
    20. Pavel A. Zhizhko, Andrey V. Pichugov, Nikolai S. Bushkov, Andrey V. Rumyantsev, Kamil I. Utegenov, Valeria N. Talanova, Tatyana V. Strelkova, Dmitry Lebedev, Deni Mance, Dmitry N. Zarubin. Catalytic Imido-Transfer Reactions of Well-Defined Silica-Supported Titanium Imido Complexes Prepared via Surface Organometallic Chemistry. Organometallics 2020, 39 (7) , 1014-1023. https://doi.org/10.1021/acs.organomet.9b00779
    21. Adam J. Pearce, Robin P. Harkins, Benjamin R. Reiner, Alexander C. Wotal, Rachel J. Dunscomb, Ian A. Tonks. Multicomponent Pyrazole Synthesis from Alkynes, Nitriles, and Titanium Imido Complexes via Oxidatively Induced N–N Bond Coupling. Journal of the American Chemical Society 2020, 142 (9) , 4390-4399. https://doi.org/10.1021/jacs.9b13173
    22. Marten L. Ploeger, Andrea Darù, Jeremy N. Harvey, Xile Hu. Reductive Cleavage of Azoarene as a Key Step in Nickel-Catalyzed Amidation of Esters with Nitroarenes. ACS Catalysis 2020, 10 (4) , 2845-2854. https://doi.org/10.1021/acscatal.9b05049
    23. Lan Zhou, Xiao-De An, Shuo Yang, Xian-Jiang Li, Chang-Lun Shao, Qing Liu, Jian Xiao. Organocatalytic Cascade β-Functionalization/Aromatization of Pyrrolidines via Double Hydride Transfer. Organic Letters 2020, 22 (3) , 776-780. https://doi.org/10.1021/acs.orglett.9b03918
    24. Evan P. Beaumier, Meghan E. McGreal, Adam R. Pancoast, R. Hunter Wilson, James T. Moore, Brendan J. Graziano, Jason D. Goodpaster, Ian A. Tonks. Carbodiimide Synthesis via Ti-Catalyzed Nitrene Transfer from Diazenes to Isocyanides. ACS Catalysis 2019, 9 (12) , 11753-11762. https://doi.org/10.1021/acscatal.9b04107
    25. Kento Kawakita, Yuya Kakiuchi, Evan P. Beaumier, Ian A. Tonks, Hayato Tsurugi, Kazushi Mashima. Synthesis of Pyridylimido Complexes of Tantalum and Niobium by Reductive Cleavage of the N═N Bond of 2,2′-Azopyridine: Precursors for Early–Late Heterobimetallic Complexes. Inorganic Chemistry 2019, 58 (22) , 15155-15165. https://doi.org/10.1021/acs.inorgchem.9b02043
    26. Juan Soto, Juan C. Otero. Conservation of El-Sayed’s Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene. The Journal of Physical Chemistry A 2019, 123 (42) , 9053-9060. https://doi.org/10.1021/acs.jpca.9b06915
    27. Sai Puneet Desai, Jingyun Ye, Timur Islamoglu, Omar K. Farha, Connie C. Lu. Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics 2019, 38 (18) , 3466-3473. https://doi.org/10.1021/acs.organomet.9b00331
    28. Kun Li, Li Chen, Yun-Xiang Fan, Yao Wei, Sheng-Jiao Yan. Multicomponent Tether Catalysis Synthesis of Highly Functionalized 4-(Pyridin-2-ylmethyl)-2-aminopyrroles via Cascade Reaction Is Accompanied by Decarboxylation. The Journal of Organic Chemistry 2019, 84 (18) , 11971-11982. https://doi.org/10.1021/acs.joc.9b01814
    29. Benjamin R. Reiner, Ian A. Tonks. Group 4 Diarylmetallocenes as Bespoke Aryne Precursors for Titanium-Catalyzed [2 + 2 + 2] Cycloaddition of Arynes and Alkynes. Inorganic Chemistry 2019, 58 (16) , 10508-10515. https://doi.org/10.1021/acs.inorgchem.9b01082
    30. Logan A. Combee, Shea L. Johnson, Julie E. Laudenschlager, Michael K. Hilinski. Rh(II)-Catalyzed Nitrene-Transfer [5 + 1] Cycloadditions of Aryl-Substituted Vinylcyclopropanes. Organic Letters 2019, 21 (7) , 2307-2311. https://doi.org/10.1021/acs.orglett.9b00594
    31. Kento Kawakita, Evan P. Beaumier, Yuya Kakiuchi, Hayato Tsurugi, Ian A. Tonks, Kazushi Mashima. Bis(imido)vanadium(V)-Catalyzed [2+2+1] Coupling of Alkynes and Azobenzenes Giving Multisubstituted Pyrroles. Journal of the American Chemical Society 2019, 141 (10) , 4194-4198. https://doi.org/10.1021/jacs.8b13390
    32. Hsin-Chun Chiu, Xin Yi See, Ian A. Tonks. Dative Directing Group Effects in Ti-Catalyzed [2+2+1] Pyrrole Synthesis: Chemo- and Regioselective Alkyne Heterocoupling. ACS Catalysis 2019, 9 (1) , 216-223. https://doi.org/10.1021/acscatal.8b04669
    33. Zachary W. Davis-Gilbert, Kento Kawakita, Daniel R. Blechschmidt, Hayato Tsurugi, Kazushi Mashima, Ian A. Tonks. In Situ Catalyst Generation and Benchtop-Compatible Entry Points for TiII/TiIV Redox Catalytic Reactions. Organometallics 2018, 37 (23) , 4439-4445. https://doi.org/10.1021/acs.organomet.8b00474
    34. Noriyuki Takai, Takuro Tsutsumi, Kenichiro Saita, Tetsuya Taketsugu, Takao Tsuneda. Revealing the electron driven mechanism in metal catalyzed Kumada cross coupling reaction. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-88207-w
    35. Rui Zhang, Kangmin Wen, Guangbin Dong. Downsizing lactams via Rh-catalyzed C–C activation. Chem 2025, 11 (8) , 102622. https://doi.org/10.1016/j.chempr.2025.102622
    36. Rachel J. Dunscomb, Connor W. Frye, Xavier Murray, Ian A. Tonks. 1,2-Dihydropyrimidine synthesis via titanium-mediated multicomponent coupling of alkynes, nitriles, and aldehydes. Chemical Communications 2025, 61 (48) , 8695-8698. https://doi.org/10.1039/D5CC01979F
    37. T.J. Fazekas, G.C. Micalizio. Early Transition Metal-Mediated Reductive Coupling Reactions. 2025, 299-328. https://doi.org/10.1016/B978-0-323-96025-0.00078-8
    38. Pratibha Bhatti, Anjali Gupta, Shubham B. Chaudhari, Rahul K. Valmiki, Joydev K. Laha, Srimanta Manna. Skeletal Editing via Transition‐Metal‐Catalyzed Nitrene Insertion. The Chemical Record 2024, 24 (12) https://doi.org/10.1002/tcr.202400184
    39. Qin Luo, Jin-Mei Qi, Li Chen, Cen Jian, Cong-Hai Zhang, Sheng-Jiao Yan. Rh( iii )-catalyzed regioselective C–H activation/[3 + 2] cyclization of KHAs with iodonium ylides accessing pyrimido[1,2- a ]indole derivatives. Organic Chemistry Frontiers 2024, 11 (21) , 6048-6054. https://doi.org/10.1039/D4QO01383B
    40. Daniel Dalland, Linden Schrecker, King Kuok (Mimi) Hii. Auto-VTNA: an automatic VTNA platform for determination of global rate laws. Digital Discovery 2024, 3 (10) , 2118-2129. https://doi.org/10.1039/D4DD00111G
    41. Enrique Francés-Poveda, Marc Martínez de Sarasa Buchaca, Carmen Moya-López, Iñigo J. Vitorica-Yrezabal, Isabel López-Solera, José A. Castro-Osma, Felipe de la Cruz-Martínez, Agustín Lara-Sánchez. Calcium-catalysed ring-opening copolymerisation of epoxides and cyclic anhydrides. Polymer Chemistry 2024, 15 (32) , 3238-3245. https://doi.org/10.1039/D4PY00379A
    42. Yukun Cheng, Daniel N. Huh, Ian A. Tonks. Mechanistic study of pyrazole synthesis via oxidation-induced N–N coupling of diazatitanacycles. Dalton Transactions 2024, 53 (22) , 9510-9515. https://doi.org/10.1039/D4DT01412J
    43. Ying Lv, Li Chen, Xinghan Yun, Kun Li, Shengjiao Yan. Cascade reaction of 3-formylchromones: Highly selective synthesis of 4-oxo-3-(1H-pyrrol-3-yl)-4H-chromenes. Green Synthesis and Catalysis 2024, 5 (2) , 94-101. https://doi.org/10.1016/j.gresc.2022.10.003
    44. Grace K. Murphy, Corey A. Richards, Seth A. Applegate, Jamie M. Neely. Two-Step, One-Pot Pyrrole Synthesis by Iron-Catalyzed ­Carboamination/Copper-Mediated Cyclization. Synlett 2023, 34 (05) , 433-436. https://doi.org/10.1055/a-1928-3527
    45. Zhenwei Shi, Wenxiu Mao, Zhenning Yang, Shuzhe Sun, Chen-Ho Tung, Zhenghu Xu. Au-catalyzed neighboring hydroxymethyl group directed cycloaddition of alkyne with diazadienes: Synthesis of polysubstituted pyrroles. Chinese Chemical Letters 2023, 34 (1) , 107488. https://doi.org/10.1016/j.cclet.2022.05.002
    46. Daniel N. Huh, Ross F. Koby, Zoe E. Stuart, Rachel J. Dunscomb, Nathan D. Schley, Ian A. Tonks. Reassessment of N 2 activation by low-valent Ti-amide complexes: a remarkable side-on bridged bis-N 2 adduct is actually an arene adduct. Chemical Science 2022, 13 (45) , 13330-13337. https://doi.org/10.1039/D2SC04368H
    47. T. R. Roose, D. S. Verdoorn, P. Mampuys, E. Ruijter, B. U. W. Maes, R. V. A. Orru. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chemical Society Reviews 2022, 51 (14) , 5842-5877. https://doi.org/10.1039/D1CS00305D
    48. . Heterocycles from Cycloaddition of Alkynes. 2022, 285-364. https://doi.org/10.1002/9783527804801.ch8
    49. Miaofeng Ren, Yu‐Chao Wang, Shangfeng Ren, Keke Huang, Jin‐Biao Liu, Guanyinsheng Qiu. Metal‐Enabled Reactions of Nitrenes with Alkynes: Beyond Gold Catalysis. ChemCatChem 2022, 14 (10) https://doi.org/10.1002/cctc.202200008
    50. Bo Li, Haojiang Lin, Liangbin Huang, Huanfeng Jiang. Pyrroles and Their Benzo Derivatives: Synthesis. 2022, 156-174. https://doi.org/10.1016/B978-0-12-409547-2.14911-X
    51. Xinzhe Shi, Sihan Li, Melanie Reiß, Anke Spannenberg, Thorsten Holtrichter-Rößmann, Fabian Reiß, Torsten Beweries. 1-Zirconacyclobuta-2,3-dienes: synthesis of organometallic analogs of elusive 1,2-cyclobutadiene, unprecedented intramolecular C–H activation, and reactivity studies. Chemical Science 2021, 12 (48) , 16074-16084. https://doi.org/10.1039/D1SC06052J
    52. Pavel A. Zhizhko, Nikolai S. Bushkov, Andrey V. Pichugov, Dmitry N. Zarubin. Oxo/imido heterometathesis: From molecular stoichiometric studies to well-defined heterogeneous catalysts. Coordination Chemistry Reviews 2021, 448 , 214112. https://doi.org/10.1016/j.ccr.2021.214112
    53. Guang Shi, Jie Sun, Zhiwei Chen. One‐Pot Electro‐Oxidative Annulation Reactions: Synthesis of Polysubstituted Pyrroles from Anilines and Alkynoates. ChemistrySelect 2021, 6 (44) , 12342-12345. https://doi.org/10.1002/slct.202102593
    54. Malte Fischer, Manfred Manßen, Marc Schmidtmann, Thorsten Klüner, Rüdiger Beckhaus. Selective propargylic C(sp 3 )–H activation of methyl-substituted alkynes versus [2 + 2] cycloaddition at a titanium imido template. Chemical Science 2021, 12 (41) , 13711-13718. https://doi.org/10.1039/D1SC04334J
    55. Skye Fortier, Alejandra Gomez-Torres. Redox chemistry of discrete low-valent titanium complexes and low-valent titanium synthons. Chemical Communications 2021, 57 (80) , 10292-10316. https://doi.org/10.1039/D1CC02772G
    56. N. Dennis. Addition Reactions: Cycloaddition. 2021, 413-450. https://doi.org/10.1002/9781119531975.ch11
    57. E. Gras, S. Chassaing. Carbenes and Nitrenes. 2021, 137-166. https://doi.org/10.1002/9781119531975.ch4
    58. Catherine Anne Moulder, Thomas R. Cundari. Theoretical Thermochemistry of Tungsten Including σ and π Bond Components. 2021https://doi.org/10.12794/metadc1833439
    59. Daniel N. Huh, Yukun Cheng, Connor W. Frye, Dominic T. Egger, Ian A. Tonks. Multicomponent syntheses of 5- and 6-membered aromatic heterocycles using group 4–8 transition metal catalysts. Chemical Science 2021, 12 (28) , 9574-9590. https://doi.org/10.1039/D1SC03037J
    60. Changqing Ye, Yihang Jiao, Mong-Feng Chiou, Yajun Li, Hongli Bao. Direct synthesis of pentasubstituted pyrroles and hexasubstituted pyrrolines from propargyl sulfonylamides and allenamides. Chemical Science 2021, 12 (26) , 9162-9167. https://doi.org/10.1039/D1SC02090K
    61. Kaifeng Wang, Qiao Wu, Siwei Bi, Lingjun Liu, Guang Chen, Yulin Li, Tony D. James, Yuxia Liu. Theoretical evaluation of the carbene-based site-selectivity in gold( iii )-catalyzed annulations of alkynes with anthranils. Chemical Communications 2021, 57 (12) , 1494-1497. https://doi.org/10.1039/D0CC07440C
    62. Baoping Ling, Jiarong Wang, Yuxia Liu, Yuan‐Ye Jiang, Peng Liu, Jin Feng, Siwei Bi. Decarbonylative Issues Involved in Ru(II)‐Catalyzed [6+2−1] Annulation Reaction of Hydroxychromone with Alkyne: A DFT Study. European Journal of Organic Chemistry 2021, 2021 (2) , 266-273. https://doi.org/10.1002/ejoc.202001270
    63. L.N. Grant, J.R. Aguilar-Calderón, D.J. Mindiola. Titanium. 2021, 97-161. https://doi.org/10.1016/B978-0-12-409547-2.14923-6
    64. Jiliang Zhou, Hyehwang Kim, Liu Leo Liu, Levy L. Cao, Douglas W. Stephan. An arene-stabilized η 5 -pentamethylcyclopentadienyl antimony dication acts as a source of Sb + or Sb 3+ cations. Chemical Communications 2020, 56 (85) , 12953-12956. https://doi.org/10.1039/D0CC02710C
    65. Manfred Manßen, Laurel L. Schafer. Titanium catalysis for the synthesis of fine chemicals – development and trends. Chemical Society Reviews 2020, 49 (19) , 6947-6994. https://doi.org/10.1039/D0CS00229A
    66. Yukun Cheng, Channing K. Klein, Ian A. Tonks. Synthesis of pentasubstituted 2-aryl pyrroles from boryl and stannyl alkynes via one-pot sequential Ti-catalyzed [2 + 2 + 1] pyrrole synthesis/cross coupling reactions. Chemical Science 2020, 11 (37) , 10236-10242. https://doi.org/10.1039/D0SC01576H
    67. Mi-Na Zhao, Gui-Wan Ning, De-Suo Yang, Peng Gao, Ming-Jin Fan, Li-Fang Zhao. Nickel-catalyzed formal [3 + 2]-cycloaddition of 2H-azirines with 1,3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Letters 2020, 61 (38) , 152319. https://doi.org/10.1016/j.tetlet.2020.152319
    68. Evan P. Beaumier, Amy A. Ott, Xuelan Wen, Zachary W. Davis-Gilbert, T. Alexander Wheeler, Joseph J. Topczewski, Jason D. Goodpaster, Ian A. Tonks. Ti-catalyzed ring-opening oxidative amination of methylenecyclopropanes with diazenes. Chemical Science 2020, 11 (27) , 7204-7209. https://doi.org/10.1039/D0SC01998D
    69. Wenbin Liang, Kazunari Nakajima, Yoshiaki Nishibayashi. Synthesis of 1,2,4-azadiphosphole derivatives based on vanadium-catalyzed [2+2+1] cycloaddition reactions of azobenzenes with phosphaalkynes. RSC Advances 2020, 10 (22) , 12730-12733. https://doi.org/10.1039/D0RA02503H
    70. Zhongshu Li, Xiaodan Chen, Liu Leo Liu, Moritz Theodor Scharnhölz, Hansjörg Grützmacher. N‐Heterocyclic Carbene Stabilized Dicarbondiphosphides: Strong Neutral Four‐Membered Heterocyclic 6π‐Electron Donors. Angewandte Chemie 2020, 132 (11) , 4318-4323. https://doi.org/10.1002/ange.201914015
    71. Zhongshu Li, Xiaodan Chen, Liu Leo Liu, Moritz Theodor Scharnhölz, Hansjörg Grützmacher. N‐Heterocyclic Carbene Stabilized Dicarbondiphosphides: Strong Neutral Four‐Membered Heterocyclic 6π‐Electron Donors. Angewandte Chemie International Edition 2020, 59 (11) , 4288-4293. https://doi.org/10.1002/anie.201914015
    72. Kento Kawakita, Bernard F. Parker, Yuya Kakiuchi, Hayato Tsurugi, Kazushi Mashima, John Arnold, Ian A. Tonks. Reactivity of terminal imido complexes of group 4–6 metals: Stoichiometric and catalytic reactions involving cycloaddition with unsaturated organic molecules. Coordination Chemistry Reviews 2020, 407 , 213118. https://doi.org/10.1016/j.ccr.2019.213118
    73. Alejandra Gómez-Torres, J. Rolando Aguilar-Calderón, Carlos Saucedo, Aldo Jordan, Alejandro Metta-Magaña, Balazs Pinter, Skye Fortier. Reversible oxidative-addition and reductive-elimination of thiophene from a titanium complex and its thermally-induced hydrodesulphurization chemistry. Chemical Communications 2020, 56 (10) , 1545-1548. https://doi.org/10.1039/C9CC09267F
    74. Justin M. Lopchuk. Five-Membered Ring Systems: Pyrroles and Benzo Analogs. 2020, 223-280. https://doi.org/10.1016/B978-0-12-819962-6.00006-3
    75. Sudheer S. Kurup, Richard J. Staples, Richard L. Lord, Stanislav Groysman. Synthesis of Chromium(II) Complexes with Chelating Bis(alkoxide) Ligand and Their Reactions with Organoazides and Diazoalkanes. Molecules 2020, 25 (2) , 273. https://doi.org/10.3390/molecules25020273
    76. . Titanium catalyzed synthesis of amines and N-heterocycles. 2020, 405-468. https://doi.org/10.1016/bs.adomc.2020.04.003
    77. Ram N. Ram, Sandhya Sadanandan, Dharmendra Kumar Gupta. β,β,β‐Trichloroethyl‐ N H‐Enamine as Viable System for 5‐ Endo‐trig Radical Cyclization via Multifaceted Cu I −Cu II Redox Catalysis: Single Step Synthesis of Multi‐Functionalized N H‐Pyrroles. Advanced Synthesis & Catalysis 2019, 361 (24) , 5661-5676. https://doi.org/10.1002/adsc.201900938
    78. Kelly E. Aldrich, Dhwani Kansal, Aaron L. Odom. Catalyst design insights from modelling a titanium-catalyzed multicomponent reaction. Faraday Discussions 2019, 220 , 208-230. https://doi.org/10.1039/C9FD00033J
    79. Julie E. Laudenschlager, Logan A. Combee, Michael K. Hilinski. Intermolecular scandium triflate-promoted nitrene-transfer [5 + 1] cycloadditions of vinylcyclopropanes. Organic & Biomolecular Chemistry 2019, 17 (43) , 9413-9417. https://doi.org/10.1039/C9OB01858A
    80. Marc Baltrun, Fabian A. Watt, Roland Schoch, Christoph Wölper, Adam G. Neuba, Stephan Hohloch. A new bis-phenolate mesoionic carbene ligand for early transition metal chemistry. Dalton Transactions 2019, 48 (39) , 14611-14625. https://doi.org/10.1039/C9DT03099A
    81. Kelly E. Aldrich, Aaron L. Odom. A silica-supported titanium catalyst for heterogeneous hydroamination and multicomponent coupling reactions. Dalton Transactions 2019, 48 (30) , 11352-11360. https://doi.org/10.1039/C9DT01835B
    82. Jiliang Zhou, Liu Leo Liu, Levy L. Cao, Douglas W. Stephan. The Arene‐Stabilized η 5 ‐Pentamethylcyclopentadienyl Arsenic Dication [(η 5 ‐Cp*)As(toluene)] 2+. Angewandte Chemie 2019, 131 (16) , 5461-5466. https://doi.org/10.1002/ange.201902039
    83. Jiliang Zhou, Liu Leo Liu, Levy L. Cao, Douglas W. Stephan. The Arene‐Stabilized η 5 ‐Pentamethylcyclopentadienyl Arsenic Dication [(η 5 ‐Cp*)As(toluene)] 2+. Angewandte Chemie International Edition 2019, 58 (16) , 5407-5412. https://doi.org/10.1002/anie.201902039
    84. Christian D.-T. Nielsen, Jordi Burés. Visual kinetic analysis. Chemical Science 2019, 10 (2) , 348-353. https://doi.org/10.1039/C8SC04698K
    85. Evan P. Beaumier, Adam J. Pearce, Xin Yi See, Ian A. Tonks. Modern applications of low-valent early transition metals in synthesis and catalysis. Nature Reviews Chemistry 2019, 3 (1) , 15-34. https://doi.org/10.1038/s41570-018-0059-x
    86. Adam J. Pearce, Xin Yi See, Ian A. Tonks. Oxidative nitrene transfer from azides to alkynes via Ti( ii )/Ti( iv ) redox catalysis: formal [2+2+1] synthesis of pyrroles. Chemical Communications 2018, 54 (50) , 6891-6894. https://doi.org/10.1039/C8CC02623H

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2018, 140, 23, 7267–7281
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b03546
    Published May 15, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    9231

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.