Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/a76ee525195c3258b703a1faf2e3cdb2.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds | Langmuir
    Article

    Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds
    Click to copy article linkArticle link copied!

    View Author Information
    University of Cambridge, Department of Chemical Engineering and Biotechnology, Tennis Court Rd, CB2 1QT, Cambridge, United Kingdom
    *To whom correspondence should be addressed. E-mail: [email protected]. Phone: +44(0)1223 334157. Fax: +44(0)1223 334162.
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2010, 26, 19, 15694–15699
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la102693m
    Published September 13, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Table of values for holographic response, cohesive energy, boiling point, and octanol−water partition coefficient for the molecules tested. Plot of the sensor response rates and equilibrium times for the hydrocarbon gases tested in this study and other volatile organic compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 53 publications.

    1. Aleksandra Hernik, Faolan Radford McGovern, Izabela Naydenova. Optical Response of PDMS Surface Diffraction Gratings under Exposure to Volatile Organic Compounds. ACS Applied Optical Materials 2024, 2 (6) , 1188-1197. https://doi.org/10.1021/acsaom.4c00138
    2. Kohsuke Mori, Takaaki Murakami, Hiromi Yamashita. Luminescent Single-Atom Eu-Coordinated Graphitic Carbon Nitride Nanosheets for Selective Sensing of Acetone and Cyclohexane. ACS Applied Nano Materials 2020, 3 (10) , 10209-10217. https://doi.org/10.1021/acsanm.0c02180
    3. Teresa L. Mako, Joan M. Racicot, Mindy Levine. Supramolecular Luminescent Sensors. Chemical Reviews 2019, 119 (1) , 322-477. https://doi.org/10.1021/acs.chemrev.8b00260
    4. Ali K. Yetisen, Izabela Naydenova, Fernando da Cruz Vasconcellos, Jeffrey Blyth, and Christopher R. Lowe . Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chemical Reviews 2014, 114 (20) , 10654-10696. https://doi.org/10.1021/cr500116a
    5. J. L. Martinez Hurtado and C. R. Lowe . Ammonia-Sensitive Photonic Structures Fabricated in Nafion Membranes by Laser Ablation. ACS Applied Materials & Interfaces 2014, 6 (11) , 8903-8908. https://doi.org/10.1021/am5016588
    6. Andrea Di Donato, Davide Bizzaro, Riccardo Castagna, Narimane Hassaine, Costanzo Di Perna, Oriano Francescangeli, Cristiano Riminesi, Daniele E. Lucchetta. Multiple VOCs sensing by monitoring the molecular diffusion through holographic thin gratings. Optical Materials 2025, 168 , 117357. https://doi.org/10.1016/j.optmat.2025.117357
    7. Aleksandra Hernik, Jorid Smets, Zhe Wang, Yuliya Semenova, Jin‐Chong Tan, Rob Ameloot, Izabela Naydenova. Optical Detection of Volatile Organic Compounds: A Review of Methods and Functionalized Sensing Materials. Advanced Optical Materials 2025, 13 (27) https://doi.org/10.1002/adom.202500369
    8. I. S. Shchemelev, N. A. Zinoviev, A. V. Ivanov, N. B. Ferapontov, I. V. Mikheev, A. N. Gagarin. Sensing Granular Material Based on an Impregnated Cross-Linked Polyvinyl Alcohol–Magnetite Composite to Determine Carbohydrates Using Optical Micrometry. Inorganic Materials: Applied Research 2024, 15 (6) , 1591-1599. https://doi.org/10.1134/S2075113325700121
    9. Deepak Kumar, Komal Sharma, Manoj Kumar, Raj Kumar. Controlling the optical wavefronts for multiparametric sensing: Holography cum metamaterial centric perspectives. Optics & Laser Technology 2024, 176 , 110954. https://doi.org/10.1016/j.optlastec.2024.110954
    10. Graceson Antony, Rinto Eyyalil Joseph, Saji George, Dervil Cody, Izabela Naydenova. Optically accessible gas exposure apparatus for testing and characterization of holographic gas sensors. Applied Optics 2024, 63 (19) , 5039. https://doi.org/10.1364/AO.524654
    11. I. S. Shchemelev, N. A. Zinov’ev, A. V. Ivanov, N. B. Ferapontov, I. V. Mikheev, A. N. Gagarin. A sensory granular material based on impregnated composite «cross-linked polyvinyl alcohol – magnetite» for the determination of carbohydrates by optical micrometry. Industrial laboratory. Diagnostics of materials 2024, 90 (6) , 5-14. https://doi.org/10.26896/1028-6861-2024-90-6-5-14
    12. Ivan S. Shchemelev, Alexander V. Ivanov, Nikolay B. Ferapontov. Composite “Crosslinked Polyvinyl Alcohol-Magnetite” as a Stimuli-Responsive Matrix for Optical Methods. Molecules 2024, 29 (12) , 2794. https://doi.org/10.3390/molecules29122794
    13. Winda Devina, Iyan Subiyanto, Dao Thi Dung, Seong Ok Han, Hyung Chul Yoon, Do Van Lam, Seung-Mo Lee, Hyunuk Kim. Rapid synthesis of nanomaterials by solvent-free laser irradiation for energy storage and conversion. Chemical Physics Reviews 2023, 4 (4) https://doi.org/10.1063/5.0150598
    14. Faolan Radford McGovern, Aleksandra Hernik, Catherine Grogan, George Amarandei, Izabela Naydenova. The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity. Sensors 2023, 23 (12) , 5711. https://doi.org/10.3390/s23125711
    15. Christopher R. Lowe, Gita Khalili Moghaddam. Physical Sensors: Holographic Sensors. 2023, 123-140. https://doi.org/10.1016/B978-0-12-822548-6.10037-8
    16. Massimo Fioranelli, Aroonkumar Beesham, Alireza Sepehri. A Proposal for an Ultrasound/Sound Holographic Microscope Using Entangled Mobile Phone Inductors. Ultrasound International Open 2022, 08 (02) , E53-E58. https://doi.org/10.1055/a-1932-8287
    17. E. S. Bolshakov, I. S. Schemelev, A. V. Ivanov, A. A. Kozlov. Photonic Crystals and Their Analogues as Tools for Chemical Analysis. Journal of Analytical Chemistry 2022, 77 (10) , 1215-1235. https://doi.org/10.1134/S1061934822100033
    18. Retwik Parui, Niranjan Meher, Parameswar Krishnan Iyer. Discriminative light-up detection of volatile chlorinated solvents and dual-phase encrypted security ink. Materials Advances 2022, 3 (14) , 5980-5986. https://doi.org/10.1039/D2MA00319H
    19. Md. Sazal Miah, Md. Atiqur Rahman, Md. Mosaaraf Hossain. Air Quality Monitoring in Bangladesh: Use of Arduino with SO 2 , NH 3 , NO 2 Sensor and Radiation Kit- A Part of Smart City Planning. 2021, 1-5. https://doi.org/10.1109/ISAECT53699.2021.9668387
    20. Ji Yang, Fuqiang Cheng, Zuogang Zhu, Jinsheng Feng, Min Xue, Zihui Meng, Lili Qiu. An enhanced gas sensor based on SiO 2 @mesoporous MCM-41 core–shell nanocomposites for SO 2 visual detection. The Analyst 2020, 145 (12) , 4352-4357. https://doi.org/10.1039/D0AN00621A
    21. Izabela Naydenova. Holographic Sensors. 2020, 165-190. https://doi.org/10.1016/B978-0-12-815467-0.00007-4
    22. Ata Ur Rahman Khalid, Juan Liu, Yu Han, Naeem Ullah, Ruizhe Zhao, Yongtian Wang. Multichannel polarization encoded reflective metahologram using VO 2 spacer in visible regime. Optics Communications 2019, 451 , 211-215. https://doi.org/10.1016/j.optcom.2019.06.048
    23. Kedong Chen, Mi Zhang, Hairong Wang, Hanqing Gu. A potentiometric SO2 gas sensor based on the Li3PO4-Li2SiO3 solid electrolyte thin film. Review of Scientific Instruments 2019, 90 (6) https://doi.org/10.1063/1.5080474
    24. Fei Cheng, Lei Ding, Liangyu Qiu, Daniel Nikolov, Aaron Bauer, Jannick P. Rolland, A. Nick Vamivakas. Polarization-switchable holograms based on efficient, broadband multifunctional metasurfaces in the visible regime. Optics Express 2018, 26 (23) , 30678. https://doi.org/10.1364/OE.26.030678
    25. Dervil Cody, Sabad-e Gul, Tatsiana Mikulchyk, Muhammad Irfan, Anastasia Kharchenko, Kamila Goldyn, Suzanne Martin, Svetlana Mintova, John Cassidy, Izabela Naydenova. Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Applied Optics 2018, 57 (22) , E173. https://doi.org/10.1364/AO.57.00E173
    26. P. R. Matías-García, J. L. Martinez-Hurtado. Kidney Smartphone Diagnostics. 2018, 487-498. https://doi.org/10.1007/978-1-4939-7614-0_36
    27. D. Cody, I. Naydenova. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing Part II: volume gratings. Journal of the Optical Society of America A 2018, 35 (1) , 12. https://doi.org/10.1364/JOSAA.35.000012
    28. D. Cody, I. Naydenova. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing Part I: surface relief gratings. Journal of the Optical Society of America A 2017, 34 (12) , 2110. https://doi.org/10.1364/JOSAA.34.002110
    29. J.M. Versnel, C. Williams, C.A.B. Davidson, T.D. Wilkinson, C.R. Lowe. Signal intensity enhancement of laser ablated volume holograms. Optical Materials 2017, 73 , 400-407. https://doi.org/10.1016/j.optmat.2017.08.003
    30. Yu Zhao, Guizhi Gao, Dagang Liu, Donglin Tian, Yinyan Zhu, Yu Chang. Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydrate Polymers 2017, 174 , 39-47. https://doi.org/10.1016/j.carbpol.2017.06.059
    31. Bartosz Szulczyński, Jacek Gębicki. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4 (1) , 21. https://doi.org/10.3390/environments4010021
    32. Tatsiana Mikulchyk, James Walshe, Dervil Cody, Suzanne Martin, Izabela Naydenova. Humidity and temperature induced changes in the diffraction efficiency and the Bragg angle of slanted photopolymer-based holographic gratings. Sensors and Actuators B: Chemical 2017, 239 , 776-785. https://doi.org/10.1016/j.snb.2016.08.052
    33. Juan L. Martinez-Hurtado, Ali K. Yetisen, Seok-Hyun Yun. Multiplex Smartphone Diagnostics. 2017, 295-302. https://doi.org/10.1007/978-1-4939-6730-8_26
    34. Rui Gao, Dongpeng Yan. Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs. Chemical Communications 2017, 53 (39) , 5408-5411. https://doi.org/10.1039/C7CC01794D
    35. Ifat Jahangir, Goutam Koley. Modeling the performance limits of novel microcantilever heaters for volatile organic compound detection. Journal of Micromechanics and Microengineering 2017, 27 (1) , 015024. https://doi.org/10.1088/1361-6439/27/1/015024
    36. Sandro C. Esteves, Fabiola C. Bento. Chapter 22 Summary evidence for the effect of laboratory air quality on pregnancy outcome in in vitro fertilization. 2016, 331-344. https://doi.org/10.1201/9781315372464-23
    37. Dominic J. Wales, Richard M. Parker, Priscilla Quainoo, Peter A. Cooper, James C. Gates, Martin C. Grossel, Peter G.R. Smith. An integrated optical Bragg grating refractometer for volatile organic compound detection. Sensors and Actuators B: Chemical 2016, 232 , 595-604. https://doi.org/10.1016/j.snb.2016.03.150
    38. Ifat Jahangir, Goutam Koley. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28735
    39. Ali K. Yetisen, Haider Butt, Lisa R. Volpatti, Ida Pavlichenko, Matjaž Humar, Sheldon J.J. Kwok, Heebeom Koo, Ki Su Kim, Izabela Naydenova, Ali Khademhosseini, Sei Kwang Hahn, Seok Hyun Yun. Photonic hydrogel sensors. Biotechnology Advances 2016, 34 (3) , 250-271. https://doi.org/10.1016/j.biotechadv.2015.10.005
    40. Monika Zawadzka, Tatsiana Mikulchyk, Dervil Cody, Suzanne Martin, Ali Kemal Yetisen, Juan Leonardo Martinez-Hurtado, Haider Butt, Emilia Mihaylova, Hussein Awala, Svetlana Mintova, Seok Hyun Yun, Izabela Naydenova. Photonic Materials for Holographic Sensing. 2016, 315-359. https://doi.org/10.1007/978-3-319-24990-2_11
    41. J.L. Martinez Hurtado, C.R. Lowe. An integrated photonic-diffusion model for holographic sensors in polymeric matrices. Journal of Membrane Science 2015, 495 , 14-19. https://doi.org/10.1016/j.memsci.2015.07.064
    42. , , , Tatsiana Mikulchyk, James Walshe, Dervil Cody, Suzanne Martin, Izabela Naydenova. Humidity and temperature response of photopolymer-based holographic gratings. 2015, 950809. https://doi.org/10.1117/12.2183782
    43. Ali Kemal Yetisen. Holographic pH Sensors. 2015, 53-83. https://doi.org/10.1007/978-3-319-13584-7_3
    44. Ali Kemal Yetisen. Holographic Metal Ion Sensors. 2015, 85-99. https://doi.org/10.1007/978-3-319-13584-7_4
    45. Jacqueline M. Rankin, Qifan Zhang, Maria K. LaGasse, Yinan Zhang, Jon R. Askim, Kenneth S. Suslick. Solvatochromic sensor array for the identification of common organic solvents. The Analyst 2015, 140 (8) , 2613-2617. https://doi.org/10.1039/C4AN02253J
    46. Ali K. Yetisen, Yunuen Montelongo, Nicholas M. Farandos, Izabela Naydenova, Christopher R. Lowe, Seok Hyun Yun. Mechanism of multiple grating formation in high-energy recording of holographic sensors. Applied Physics Letters 2014, 105 (26) https://doi.org/10.1063/1.4905352
    47. Ali K. Yetisen, Haider Butt, Fernando da Cruz Vasconcellos, Yunuen Montelongo, Colin A. B. Davidson, Jeff Blyth, Leon Chan, J. Bryan Carmody, Silvia Vignolini, Ullrich Steiner, Jeremy J. Baumberg, Timothy D. Wilkinson, Christopher R. Lowe. Light‐Directed Writing of Chemically Tunable Narrow‐Band Holographic Sensors. Advanced Optical Materials 2014, 2 (3) , 250-254. https://doi.org/10.1002/adom.201300375
    48. Praveen K. Sekhar, Kumar Subramaniyam. Electrical characterization of a mixed potential propylene sensor. Sensors and Actuators B: Chemical 2013, 188 , 367-371. https://doi.org/10.1016/j.snb.2013.07.003
    49. Raphael St-Gelais, Gillian Mackey, John Saunders, Jingjing Zhou, Antoine Leblanc-Hotte, Alexandre Poulin, Jack A. Barnes, Hans-Peter Loock, R. Stephen Brown, Yves-Alain Peter. Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers. Sensors and Actuators B: Chemical 2013, 182 , 45-52. https://doi.org/10.1016/j.snb.2013.02.016
    50. Sandro Esteves, Ashok Agarwal. Explaining How Reproductive Laboratories Work. 2013, 79-127. https://doi.org/10.1007/978-1-4419-7139-5_9
    51. Sandro C. Esteves, Fabiola C. Bento. Implementation of air quality control in reproductive laboratories in full compliance with the Brazilian Cells and Germinative Tissue Directive. Reproductive BioMedicine Online 2013, 26 (1) , 9-21. https://doi.org/10.1016/j.rbmo.2012.10.010
    52. A.V. Kraiski, V.A. Postnikov, T.T. Sultanov, T.V. Mironova, A.A. Kraiski, M.A. Shevchenko. On optical properties of holographic sensors based on silver emulsions. 2011, 1-2. https://doi.org/10.1109/LFNM.2011.6144995
    53. Christopher R. Lowe. The Future. 2011, 375-400. https://doi.org/10.1016/B978-0-12-387718-5.00015-8

    Langmuir

    Cite this: Langmuir 2010, 26, 19, 15694–15699
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la102693m
    Published September 13, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1416

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.