Entropically Patchy Particles: Engineering Valence through Shape EntropyClick to copy article linkArticle link copied!
Abstract

Patchy particles are a popular paradigm for the design and synthesis of nanoparticles and colloids for self-assembly. In “traditional” patchy particles, anisotropic interactions arising from patterned coatings, functionalized molecules, DNA, and other enthalpic means create the possibility for directional binding of particles into higher-ordered structures. Although the anisotropic geometry of nonspherical particles contributes to the interaction patchiness through van der Waals, electrostatic, and other interactions, how particle shape contributes entropically to self-assembly is only now beginning to be understood. The directional nature of entropic forces has recently been elucidated. A recently proposed theoretical framework that defines and quantifies directional entropic forces demonstrates the anisotropic—that is, patchy—nature of these emergent, attractive forces. Here we introduce the notion of entropically patchy particles as the entropic counterpart to enthalpically patchy particles. Using three example “families” of shapes, we show how to modify entropic patchiness by introducing geometric features to the particles via shape operations so as to target specific crystal structures assembled here with Monte Carlo simulations. We quantify the emergent entropic valence via a potential of mean force and torque. We show that these forces are on the order of a few kBT at intermediate densities below the onset of crystallization. We generalize these shape operations to shape anisotropy dimensions, in analogy with the anisotropy dimensions introduced for enthalpically patchy particles. Our findings demonstrate that entropic patchiness and emergent valence provide a way of engineering directional bonding into nanoparticle systems, whether in the presence or absence of additional, non-entropic forces.
Cited By
This article is cited by 185 publications.
- Lijuan Gao, Xiaobin Dai, Yibo Wu, Yuming Wang, Linghe Cheng, Li-Tang Yan. Self-Assembly at Curved Biointerfaces. ACS Nano 2024, 18
(44)
, 30184-30210. https://doi.org/10.1021/acsnano.4c09675
- Wenjie Zhou, Yuanwei Li, Benjamin E. Partridge, Chad A. Mirkin. Engineering Anisotropy into Organized Nanoscale Matter. Chemical Reviews 2024, 124
(19)
, 11063-11107. https://doi.org/10.1021/acs.chemrev.4c00299
- Carlos L. Bassani, Greg van Anders, Uri Banin, Dmitry Baranov, Qian Chen, Marjolein Dijkstra, Michael S. Dimitriyev, Efi Efrati, Jordi Faraudo, Oleg Gang, Nicola Gaston, Ramin Golestanian, G. Ivan Guerrero-Garcia, Michael Gruenwald, Amir Haji-Akbari, Maria Ibáñez, Matthias Karg, Tobias Kraus, Byeongdu Lee, Reid C. Van Lehn, Robert J. Macfarlane, Bortolo M. Mognetti, Arash Nikoubashman, Saeed Osat, Oleg V. Prezhdo, Grant M. Rotskoff, Leonor Saiz, An-Chang Shi, Sara Skrabalak, Ivan I. Smalyukh, Mario Tagliazucchi, Dmitri V. Talapin, Alexei V. Tkachenko, Sergei Tretiak, David Vaknin, Asaph Widmer-Cooper, Gerard C. L. Wong, Xingchen Ye, Shan Zhou, Eran Rabani, Michael Engel, Alex Travesset. Nanocrystal Assemblies: Current Advances and Open Problems. ACS Nano 2024, 18
(23)
, 14791-14840. https://doi.org/10.1021/acsnano.3c10201
- Camilla Beneduce, Francesco Sciortino, Petr Šulc, John Russo. Engineering Azeotropy to Optimize the Self-Assembly of Colloidal Mixtures. ACS Nano 2023, 17
(24)
, 24841-24853. https://doi.org/10.1021/acsnano.3c05569
- Daryl W. Yee, Margaret S. Lee, Joyce An, Robert J. Macfarlane. Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices. Journal of the American Chemical Society 2023, 145
(11)
, 6051-6056. https://doi.org/10.1021/jacs.3c01286
- Yi Wang, Jun Chen, Yaxu Zhong, Soojin Jeong, Ruipeng Li, Xingchen Ye. Structural Diversity in Dimension-Controlled Assemblies of Tetrahedral Gold Nanocrystals. Journal of the American Chemical Society 2022, 144
(30)
, 13538-13546. https://doi.org/10.1021/jacs.2c03196
- David M. Goggin, Joseph R. Samaniuk. 2D Colloids: Size- and Shape-Controlled 2D Materials at Fluid–Fluid Interfaces. Langmuir 2021, 37
(48)
, 14157-14166. https://doi.org/10.1021/acs.langmuir.1c02418
- Felizitas Kirner, Elena V. Sturm. Advances of Nonclassical Crystallization toward Self-Purification of Precious Metal Nanoparticle Mixtures. Crystal Growth & Design 2021, 21
(9)
, 5192-5197. https://doi.org/10.1021/acs.cgd.1c00544
- Sanja Novak, Jing Zhang, Emmanuel Kentzinger, Ulrich Rücker, Giuseppe Portale, Niklas Jung, Ulrich Jonas, Jin S. Myung, Roland G. Winkler, Gerhard Gompper, Jan K. G. Dhont, Emmanuel Stiakakis. DNA Self-Assembly Mediated by Programmable Soft-Patchy Interactions. ACS Nano 2020, 14
(10)
, 13524-13535. https://doi.org/10.1021/acsnano.0c05536
- Fangyuan Dong, Mingzhu Liu, Veronica Grebe, Michael D. Ward, Marcus Weck. Assembly of Shape-Tunable Colloidal Dimers in a Dielectrophoretic Field. Chemistry of Materials 2020, 32
(16)
, 6898-6905. https://doi.org/10.1021/acs.chemmater.0c01947
- Guolong Zhu, Ziyang Xu, Li-Tang Yan. Entropy at Bio–Nano Interfaces. Nano Letters 2020, 20
(8)
, 5616-5624. https://doi.org/10.1021/acs.nanolett.0c02635
- Dustin W. Kurka, Maximilian Niehues, Bart Jan Ravoo. Self-Assembly of Colloidal Molecules Based on Host–Guest Chemistry and Geometric Constraints. Langmuir 2020, 36
(14)
, 3924-3931. https://doi.org/10.1021/acs.langmuir.9b03891
- Duanduan Wan, Chrisy Xiyu Du, Greg van Anders, Sharon C. Glotzer. FCC ↔ BCC Phase Transitions in Convex and Concave Hard Particle Systems. The Journal of Physical Chemistry B 2019, 123
(42)
, 9038-9043. https://doi.org/10.1021/acs.jpcb.9b08310
- Nishan Parvez, Dhananjai M. Rao, Mehdi B. Zanjani. Investigation of Geometric Landscape and Structure–Property Relations for Colloidal Superstructures Using Genetic Algorithm. The Journal of Physical Chemistry B 2019, 123
(34)
, 7445-7454. https://doi.org/10.1021/acs.jpcb.9b05335
- Ioana M. Ilie, Amedeo Caflisch. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chemical Reviews 2019, 119
(12)
, 6956-6993. https://doi.org/10.1021/acs.chemrev.8b00731
- Ahmad
K. Omar, Yanze Wu, Zhen-Gang Wang, John F. Brady. Swimming to Stability: Structural and Dynamical Control via Active Doping. ACS Nano 2019, 13
(1)
, 560-572. https://doi.org/10.1021/acsnano.8b07421
- Rachael
A. Mansbach, Andrew L. Ferguson. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. The Journal of Physical Chemistry B 2018, 122
(44)
, 10219-10236. https://doi.org/10.1021/acs.jpcb.8b05781
- Mingzhu Liu, Xiaolong Zheng, Fangyuan Dong, Michael D. Ward, Marcus Weck. Reversible Morphology Switching of Colloidal Particles. Chemistry of Materials 2018, 30
(19)
, 6903-6907. https://doi.org/10.1021/acs.chemmater.8b03227
- Jae-Hyun Kim, Hye Jeong Hwang, Joon Suk Oh, Stefano Sacanna, Gi-Ra Yi. Monodisperse Magnetic Silica Hexapods. Journal of the American Chemical Society 2018, 140
(29)
, 9230-9235. https://doi.org/10.1021/jacs.8b05128
- Kevin Whitham and Tobias Hanrath . Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition. The Journal of Physical Chemistry Letters 2017, 8
(12)
, 2623-2628. https://doi.org/10.1021/acs.jpclett.7b00846
- Binbin Luo, John W. Smith, Zihao Ou, and Qian Chen . Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy. Accounts of Chemical Research 2017, 50
(5)
, 1125-1133. https://doi.org/10.1021/acs.accounts.7b00048
- Yifan Wang, James T. McGinley, and John C. Crocker . Dimpled Polyhedral Colloids Formed by Colloidal Crystal Templating. Langmuir 2017, 33
(12)
, 3080-3087. https://doi.org/10.1021/acs.langmuir.7b00202
- Mehdi B. Zanjani, Ian C. Jenkins, John C. Crocker, and Talid Sinno . Colloidal Cluster Assembly into Ordered Superstructures via Engineered Directional Binding. ACS Nano 2016, 10
(12)
, 11280-11289. https://doi.org/10.1021/acsnano.6b06415
- Thomas Tigges, Thomas Heuser, Rahul Tiwari, and Andreas Walther . 3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. Nano Letters 2016, 16
(12)
, 7870-7874. https://doi.org/10.1021/acs.nanolett.6b04146
- Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116
(18)
, 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
- Gerardo Odriozola and Marcelo Lozada-Cassou . Entropy Driven Self-Assembly in Charged Lock–Key Particles. The Journal of Physical Chemistry B 2016, 120
(26)
, 5966-5974. https://doi.org/10.1021/acs.jpcb.6b01805
- Greg van Anders, Daphne Klotsa, Andrew S. Karas, Paul M. Dodd, and Sharon C. Glotzer . Digital Alchemy for Materials Design: Colloids and Beyond. ACS Nano 2015, 9
(10)
, 9542-9553. https://doi.org/10.1021/acsnano.5b04181
- Bhuvnesh Bharti and Orlin D. Velev . Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions. Langmuir 2015, 31
(29)
, 7897-7908. https://doi.org/10.1021/la504793y
- Nashaat Rasheed, Ali A. Khorasani, Juan Cebral, Fernando Mut, Rainald Löhner, and Carolina Salvador-Morales . Mechanisms Involved in the Formation of Biocompatible Lipid Polymeric Hollow Patchy Particles. Langmuir 2015, 31
(24)
, 6639-6648. https://doi.org/10.1021/acs.langmuir.5b01551
- Benjamin A. Schultz, Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer . Symmetry Considerations for the Targeted Assembly of Entropically Stabilized Colloidal Crystals via Voronoi Particles. ACS Nano 2015, 9
(3)
, 2336-2344. https://doi.org/10.1021/nn507490j
- Michael A. Boles and Dmitri V. Talapin . Self-Assembly of Tetrahedral CdSe Nanocrystals: Effective “Patchiness” via Anisotropic Steric Interaction. Journal of the American Chemical Society 2014, 136
(16)
, 5868-5871. https://doi.org/10.1021/ja501596z
- Jaime A. Millan, Daniel Ortiz, Greg van Anders, and Sharon C. Glotzer . Self-Assembly of Archimedean Tilings with Enthalpically and Entropically Patchy Polygons. ACS Nano 2014, 8
(3)
, 2918-2928. https://doi.org/10.1021/nn500147u
- Baixu Zhu, Jun Chen, Ruipeng Li, Jarett Ren, Yi Wang, Yaxu Zhong, Yang Liu, Akira Yasuhara, Mayu Kakefuda, Yoshitaka Aoyama, Thi Vo, Xingchen Ye. Superstructural phase transitions in polymer-grafted nanooctahedra. Science Advances 2025, 11
(29)
https://doi.org/10.1126/sciadv.adw2740
- Thi Vo. Entropic Bonding—Not Quite So Simple Behaviors from Simple Hard Particles. Annual Review of Chemical and Biomolecular Engineering 2025, 16
(1)
, 147-168. https://doi.org/10.1146/annurev-chembioeng-082323-092941
- Sakineh Mizani, Martin Oettel, Péter Gurin, Szabolcs Varga. Competition between shape anisotropy and deformation in the ordering and close packing properties of quasi-one-dimensional hard superellipse fluids. Physical Review E 2025, 111
(6)
https://doi.org/10.1103/jszf-cvdn
- M. Andrecut. Entropically driven agents. International Journal of Modern Physics C 2025, 42 https://doi.org/10.1142/S0129183125500998
- Yi-Yu Cai, Zeyu Gu, Shengsong Yang, Christopher B. Murray, Cherie R. Kagan. Shape effects on the 2D self-assembly of lithographically fabricated nanoparticles. Nanoscale 2025, 8 https://doi.org/10.1039/D5NR03413B
- Salman Fariz Navas, Sabine H. L. Klapp. Discrete state model of a self-aggregating colloidal system with directional interactions. The Journal of Chemical Physics 2024, 161
(23)
https://doi.org/10.1063/5.0243978
- Yuchen Zhang, Weiling Huang, Yi-Xin Liu. Automated chain architecture screening for discovery of block copolymer assembly with graph enhanced self-consistent field theory. Communications Materials 2024, 5
(1)
https://doi.org/10.1038/s43246-024-00723-w
- Yaxin Xu, Prabhat Jandhyala, Sho C. Takatori. Dynamic surfactants drive anisotropic colloidal assembly. The Journal of Chemical Physics 2024, 161
(6)
https://doi.org/10.1063/5.0220112
- Guanzhong Wang, Hui Lu, Jiang Li, Lihua Wang, Ying Zhu, Shiping Song, Zhilei Ge, Qian Li, Jing Chen, Chunhai Fan. Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands. Chemical Research in Chinese Universities 2024, 40
(4)
, 670-674. https://doi.org/10.1007/s40242-024-4104-7
- Takahiro Ikeda, Yusei Kobayashi, Masashi Yamakawa. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. The Journal of Chemical Physics 2024, 161
(2)
https://doi.org/10.1063/5.0216550
- Thi Vo. Patchy nanoparticles with surface complexity for directed self-assembly. MRS Bulletin 2024, 49
(4)
, 330-339. https://doi.org/10.1557/s43577-024-00687-9
- Haixiao Wan, Duo Xu, Lijuan Gao, Li-Tang Yan. Entropy‐Mediated Nanoparticle Cellular Uptake. Small Science 2024, 4
(1)
https://doi.org/10.1002/smsc.202300078
- Laura Torrente-Murciano, Jennifer B. Dunn, Panagiotis D. Christofides, Jay D. Keasling, Sharon C. Glotzer, Sang Yup Lee, Kevin M. Van Geem, Jean Tom, Gaohong He. The forefront of chemical engineering research. Nature Chemical Engineering 2024, 1
(1)
, 18-27. https://doi.org/10.1038/s44286-023-00017-x
- Yuming Wang, Haixiao Wan, Lijuan Gao, Yibo Wu, Li-Tang Yan. Self-Assembly in Curved Space: Ordering, Defect and Entropy. Processes 2024, 12
(1)
, 119. https://doi.org/10.3390/pr12010119
- Hiroyuki Miki, Teruyoshi Ishigami, Junpei Yamanaka, Tohru Okuzono, Akiko Toyotama, Jitendra Mata, Honoka Komazawa, Yushi Takeda, Madoka Minami, Minori Fujita, Maho Doi, Tsunehiko Higuchi, Hiroshi Takase, Satoshi Adachi, Tetsuya Sakashita, Taro Shimaoka, Masae Nagai, Yuki Watanabe, Seijiro Fukuyama. Clustering of charged colloidal particles in the microgravity environment of space. npj Microgravity 2023, 9
(1)
https://doi.org/10.1038/s41526-023-00280-5
- David Izuchukwu Ugwu, Jeanet Conradie. Bidentate ligands in self-assembly: Synthesis, structure and applications. Journal of Molecular Structure 2023, 1293 , 136275. https://doi.org/10.1016/j.molstruc.2023.136275
- Tao Liu, Ho-Kei Chan, Duanduan Wan. Chiral photonic crystals from sphere packing. Soft Matter 2023, 19
(38)
, 7313-7322. https://doi.org/10.1039/D3SM00680H
- Tobias Dwyer, Timothy C. Moore, Joshua A. Anderson, Sharon C. Glotzer. Tunable assembly of host–guest colloidal crystals. Soft Matter 2023, 19
(36)
, 7011-7019. https://doi.org/10.1039/D3SM00891F
- Takahiro Yokoyama, Yusei Kobayashi, Noriyoshi Arai, Arash Nikoubashman. Aggregation of amphiphilic nanocubes in equilibrium and under shear. Soft Matter 2023, 19
(34)
, 6480-6489. https://doi.org/10.1039/D3SM00671A
- S. A. Adriana Estrada, Sabrina Gaidies, Jana Febbraro, Ayse Turak, Hong-Ru Lin, Yolanda Salinas, Oliver Brüggemann. Spatial characterization of peptide nucleic acid molecularly imprinted inverse opal. Monatshefte für Chemie - Chemical Monthly 2023, 154
(8)
, 925-938. https://doi.org/10.1007/s00706-023-03091-2
- Mudassar Mumtaz Virk, Konstantin Nikolaus Beitl, Peter D J van Oostrum. Synthesis of patchy particles using gaseous ligands. Journal of Physics: Condensed Matter 2023, 35
(17)
, 174003. https://doi.org/10.1088/1361-648X/acbddc
- Camilla Beneduce, Diogo E. P. Pinto, Petr Šulc, Francesco Sciortino, John Russo. Two-step nucleation in a binary mixture of patchy particles. The Journal of Chemical Physics 2023, 158
(15)
https://doi.org/10.1063/5.0140847
- Dániel Zámbó, Dávid Kovács, Gergely Südi, András Deák. Surface Modification of Gold Nanoprisms and Their Self‐Assembly with Nanospheres. Particle & Particle Systems Characterization 2023, 40
(3)
https://doi.org/10.1002/ppsc.202200197
- Ayushi Rastogi, Archana Mishra, Fanindra Pati Pandey, Rajiv Manohar, Avanish Singh Parmar. Enhancing physical characteristics of thermotropic nematic liquid crystals by dispersing in various nanoparticles and their potential applications. Emergent Materials 2023, 6
(1)
, 101-136. https://doi.org/10.1007/s42247-022-00406-7
- Lorenzo Rovigatti, John Russo, Flavio Romano, Michael Matthies, Lukáš Kroc, Petr Šulc. A simple solution to the problem of self-assembling cubic diamond crystals. Nanoscale 2022, 14
(38)
, 14268-14275. https://doi.org/10.1039/D2NR03533B
- Rachael S. Skye, Erin G. Teich, Julia Dshemuchadse. Tuning assembly structures of hard shapes in confinement
via
interface curvature. Soft Matter 2022, 18
(36)
, 6782-6790. https://doi.org/10.1039/D2SM00545J
- Silvia Adriana Estrada Alvarez, Isabella Guger, Jana Febbraro, Ayse Turak, Hong-Ru Lin, Yolanda Salinas, Oliver Brüggemann. Synthesis and Spatial Order Characterization of Controlled Silica Particle Sizes Organized as Photonic Crystals Arrays. Materials 2022, 15
(17)
, 5864. https://doi.org/10.3390/ma15175864
- John Russo, Flavio Romano, Lukáš Kroc, Francesco Sciortino, Lorenzo Rovigatti, Petr Šulc. SAT-assembly: a new approach for designing self-assembling systems. Journal of Physics: Condensed Matter 2022, 34
(35)
, 354002. https://doi.org/10.1088/1361-648X/ac5479
- Cuiling Hou, Lijuan Gao, Yuming Wang, Li-Tang Yan. Entropic control of nanoparticle self-assembly through confinement. Nanoscale Horizons 2022, 7
(9)
, 1016-1028. https://doi.org/10.1039/D2NH00156J
- Longfei Li, Peng Liu, Ke Chen, Ning Zheng, Mingcheng Yang. Active depletion torque between two passive rods. Soft Matter 2022, 18
(22)
, 4265-4272. https://doi.org/10.1039/D2SM00469K
- Lucia Baldauf, Erin G. Teich, Peter Schall, Greg van Anders, Laura Rossi. Shape and interaction decoupling for colloidal preassembly. Science Advances 2022, 8
(21)
https://doi.org/10.1126/sciadv.abm0548
- Junwei Wang, Yang Liu, Gudrun Bleyer, Eric S. A. Goerlitzer, Silvan Englisch, Thomas Przybilla, Chrameh Fru Mbah, Michael Engel, Erdmann Spiecker, Inhar Imaz, Daniel Maspoch, Nicolas Vogel. Coloration in Supraparticles Assembled from Polyhedral Metal‐Organic Framework Particles. Angewandte Chemie 2022, 134
(16)
https://doi.org/10.1002/ange.202117455
- Junwei Wang, Yang Liu, Gudrun Bleyer, Eric S. A. Goerlitzer, Silvan Englisch, Thomas Przybilla, Chrameh Fru Mbah, Michael Engel, Erdmann Spiecker, Inhar Imaz, Daniel Maspoch, Nicolas Vogel. Coloration in Supraparticles Assembled from Polyhedral Metal‐Organic Framework Particles. Angewandte Chemie International Edition 2022, 61
(16)
https://doi.org/10.1002/anie.202117455
- Aaron Michelson, Brian Minevich, Hamed Emamy, Xiaojing Huang, Yong S. Chu, Hanfei Yan, Oleg Gang. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 2022, 376
(6589)
, 203-207. https://doi.org/10.1126/science.abk0463
- Xiaofeng Huang, Liujun Song, Xiang Jiang, Xinya Zhang. Fabrication and self-assembly of the tetrahedron dimpled colloidal particles. Journal of Materials Science 2022, 57
(14)
, 7400-7415. https://doi.org/10.1007/s10853-022-07087-x
- Thi Vo, Sharon C. Glotzer. A theory of entropic bonding. Proceedings of the National Academy of Sciences 2022, 119
(4)
https://doi.org/10.1073/pnas.2116414119
- Jason S. Kahn, Oleg Gang. Designer Nanomaterials through Programmable Assembly. Angewandte Chemie 2022, 134
(3)
https://doi.org/10.1002/ange.202105678
- Jason S. Kahn, Oleg Gang. Designer Nanomaterials through Programmable Assembly. Angewandte Chemie International Edition 2022, 61
(3)
https://doi.org/10.1002/anie.202105678
- Julia Dshemuchadse. Soft matter crystallography—Complex, diverse, and new crystal structures in condensed materials on the mesoscale. Journal of Applied Physics 2022, 131
(2)
https://doi.org/10.1063/5.0072017
- Yuan Zhou, Rose K. Cersonsky, Sharon C. Glotzer. A route to hierarchical assembly of colloidal diamond. Soft Matter 2022, 18
(2)
, 304-311. https://doi.org/10.1039/D1SM01418H
- John Russo, Fabio Leoni, Fausto Martelli, Francesco Sciortino. The physics of empty liquids: from patchy particles to water. Reports on Progress in Physics 2022, 85
(1)
, 016601. https://doi.org/10.1088/1361-6633/ac42d9
- Angus McMullen, Sascha Hilgenfeldt, Jasna Brujic. DNA self-organization controls valence in programmable colloid design. Proceedings of the National Academy of Sciences 2021, 118
(46)
https://doi.org/10.1073/pnas.2112604118
- Theodore Hueckel, Glen M. Hocky, Stefano Sacanna. Total synthesis of colloidal matter. Nature Reviews Materials 2021, 6
(11)
, 1053-1069. https://doi.org/10.1038/s41578-021-00323-x
- Fengyi Gao, Jens Glaser, Sharon C. Glotzer. The role of complementary shape in protein dimerization. Soft Matter 2021, 17
(31)
, 7376-7383. https://doi.org/10.1039/D1SM00468A
- Bin Liu, Stéphanie Exiga, Etienne Duguet, Serge Ravaine. Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio. Molecules 2021, 26
(16)
, 4736. https://doi.org/10.3390/molecules26164736
- Duanduan Wan, Sharon C. Glotzer. Unexpected Dependence of Photonic Band Gap Size on Randomness in Self-Assembled Colloidal Crystals. Physical Review Letters 2021, 126
(20)
https://doi.org/10.1103/PhysRevLett.126.208002
- V. F. D. Peters, M. Vis, R. Tuinier, H. N. W. Lekkerkerker. Phase separation in mixed suspensions of bacteria and nonadsorbing polymers. The Journal of Chemical Physics 2021, 154
(15)
https://doi.org/10.1063/5.0045435
- Timothy C. Moore, Joshua A. Anderson, Sharon C. Glotzer. Shape-driven entropic self-assembly of an open, reconfigurable, binary host–guest colloidal crystal. Soft Matter 2021, 17
(10)
, 2840-2848. https://doi.org/10.1039/D0SM02073G
- Mingzhu Liu, Xiaolong Zheng, Veronica Grebe, Mingxin He, David J. Pine, Marcus Weck. Two‐Dimensional (2D) or Quasi‐2D Superstructures from DNA‐Coated Colloidal Particles. Angewandte Chemie 2021, 133
(11)
, 5808-5812. https://doi.org/10.1002/ange.202014045
- Mingzhu Liu, Xiaolong Zheng, Veronica Grebe, Mingxin He, David J. Pine, Marcus Weck. Two‐Dimensional (2D) or Quasi‐2D Superstructures from DNA‐Coated Colloidal Particles. Angewandte Chemie International Edition 2021, 60
(11)
, 5744-5748. https://doi.org/10.1002/anie.202014045
- Luca Tonti, Alessandro Patti. Fast Overlap Detection between Hard-Core Colloidal Cuboids and Spheres. The OCSI Algorithm. Algorithms 2021, 14
(3)
, 72. https://doi.org/10.3390/a14030072
- B. P. Prajwal, Fernando A. Escobedo. Bridging hexatic and tetratic phases in binary mixtures through near critical point fluctuations. Physical Review Materials 2021, 5
(2)
https://doi.org/10.1103/PhysRevMaterials.5.024003
- Isabela Quintela Matos, Fernando Escobedo. Congruent phase behavior of a binary compound crystal of colloidal spheres and dimpled cubes. The Journal of Chemical Physics 2020, 153
(21)
https://doi.org/10.1063/5.0030174
- Mingzhu Liu, Xiaolong Zheng, Veronica Grebe, David J. Pine, Marcus Weck. Tunable assembly of hybrid colloids induced by regioselective depletion. Nature Materials 2020, 19
(12)
, 1354-1361. https://doi.org/10.1038/s41563-020-0744-2
- Ahyoung Kim, Lehan Yao, Falon Kalutantirige, Shan Zhou, Qian Chen. Patchy Nanoparticle Synthesis and Self-Assembly. 2020https://doi.org/10.5772/intechopen.93374
- Flavio Romano, John Russo, Lukáš Kroc, Petr Šulc. Designing Patchy Interactions to Self-Assemble Arbitrary Structures. Physical Review Letters 2020, 125
(11)
https://doi.org/10.1103/PhysRevLett.125.118003
- Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P. Spellings, Joshua A. Anderson, Sharon C. Glotzer. freud: A software suite for high throughput analysis of particle simulation data. Computer Physics Communications 2020, 254 , 107275. https://doi.org/10.1016/j.cpc.2020.107275
- Kerong Deng, Zhishan Luo, Li Tan, Zewei Quan. Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews 2020, 49
(16)
, 6002-6038. https://doi.org/10.1039/D0CS00541J
- Brunno Rocha, Sanjib Paul, Harish Vashisth. Role of Entropy in Colloidal Self-Assembly. Entropy 2020, 22
(8)
, 877. https://doi.org/10.3390/e22080877
- Álvaro González García, Remco Tuinier, Gijsbertus de With, Alejandro Cuetos. Directional-dependent pockets drive columnar–columnar coexistence. Soft Matter 2020, 16
(29)
, 6720-6724. https://doi.org/10.1039/D0SM00802H
- Andrei A. Klishin, Greg van Anders. When does entropy promote local organization?. Soft Matter 2020, 16
(28)
, 6523-6531. https://doi.org/10.1039/C9SM02540E
- Elisabeth Josten, Manuel Angst, Artur Glavic, Paul Zakalek, Ulrich Rücker, Oliver H. Seeck, András Kovács, Erik Wetterskog, Emmanuel Kentzinger, Rafal E. Dunin-Borkowski, Lennart Bergström, Thomas Brückel. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals. Nanoscale Horizons 2020, 5
(7)
, 1065-1072. https://doi.org/10.1039/D0NH00117A
- Jairo A. Diaz A., Joon Suk Oh, Gi-Ra Yi, David J. Pine. Photo-printing of faceted DNA patchy particles. Proceedings of the National Academy of Sciences 2020, 117
(20)
, 10645-10653. https://doi.org/10.1073/pnas.1918504117
- Weiya Li, Hervé Palis, Rémi Mérindol, Jérôme Majimel, Serge Ravaine, Etienne Duguet. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chemical Society Reviews 2020, 49
(6)
, 1955-1976. https://doi.org/10.1039/C9CS00804G
- Zeynep Sumer, Alberto Striolo. Nanoparticles shape-specific emergent behaviour on liquid crystal droplets. Molecular Systems Design & Engineering 2020, 5
(2)
, 449-460. https://doi.org/10.1039/C9ME00153K
- Yoav Tsori. Bistable colloidal orientation in polar liquid near a charged wall. Journal of Colloid and Interface Science 2020, 559 , 45-50. https://doi.org/10.1016/j.jcis.2019.09.096
- Nima H. Siboni, Gaurav P. Shrivastav, Sabine H. L. Klapp. Non-monotonic response of a sheared magnetic liquid crystal to a continuously increasing external field. The Journal of Chemical Physics 2020, 152
(2)
https://doi.org/10.1063/1.5126398
- Richmond S. Newman, Samanthule Nola, Julia Dshemuchadse, Sharon C. Glotzer. Shape-controlled crystallisation pathways in dense fluids of
ccp
-forming hard polyhedra. Molecular Physics 2019, 117
(23-24)
, 3819-3826. https://doi.org/10.1080/00268976.2019.1668574
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.