Notice: file_put_contents(): Write of 833464 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Natural selection and infectious disease in human populations | Nature Reviews Genetics
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural selection and infectious disease in human populations

Key Points

  • Infectious pathogens are among the strongest selective forces that shape the human genome. Migrations and cultural changes in the past 100,000 years exposed populations to dangerous new pathogens.

  • Host genetics influences susceptibility to infectious disease. Evolutionary adaptations for resistance and symbiosis may underlie common immune-mediated diseases.

  • Signatures of selection and methods to detect them vary with the age, geographical spread and virulence of the pathogen.

  • A history of selection on a trait adds power to association studies by driving the emergence of common alleles of strong effect. Combining selection and association metrics can further increase power.

  • Genome-wide association studies (GWASs) of susceptibility to pathogens that are moderately old (1,000–50,000 years ago), geographically limited in history and exerted strong positive selective pressure will have the most power if GWASs can be done in the historically affected population.

  • An understanding of host–pathogen interactions can inform the development of new therapies for both infectious diseases and common immune-mediated diseases.

Abstract

The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogen emergence during human history.
Figure 2: Positive selection increases power to detect associations in GWASs.
Figure 3: Selected variants implicated in pathogen resistance.
Figure 4: The power offered by combining natural selection with GWASs depends on the age of selection and populations chosen.
Figure 5: Signals of selection and association may differ between populations.

Similar content being viewed by others

References

  1. Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011). This study of genetic variation in 50 worldwide populations reveals that pathogens are primary drivers of local adaptation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polgar, S. in Horizons of Anthropology (ed. Tax, S. ) (Aldine, 1964).

    Google Scholar 

  3. Armelagos, G. J., Barnes, K. C. & Lin, J. Disease in human evolution: the re-emergence of infectious disease in the third epidemiological transition. AnthroNotes 18, 1–7 (1996).

    Article  Google Scholar 

  4. Bocquet-Appel, J. P. When the world's population took off: the springboard of the Neolithic demographic transition. Science 333, 560–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Vannberg, F. O., Chapman, S. J. & Hill, A. V. Human genetic susceptibility to intracellular pathogens. Immunol. Rev. 240, 105–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Chapman, S. J. & Hill, A. V. Human genetic susceptibility to infectious disease. Nature Rev. Genet. 13, 175–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, R. M. & May, R. M. Co-evolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    Article  PubMed  Google Scholar 

  8. Cohen, M. L. Changing patterns of infectious disease. Nature 406, 762–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Cagliani, R. et al. Crohn's disease loci are common targets of protozoa-driven selection. Mol. Biol. Evol. 30, 1077–1087 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, H., Kuhn, C., Feillet, H. & Bach, J. F. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160, 1–9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jostins, L. et al. Host–microorganism interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012). This paper presents selection for pathogen resistance in IBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sironi, M. & Clerici, M. The hygiene hypothesis: an evolutionary perspective. Microbes. Infect. 12, 421–427 (2010).

    Article  PubMed  Google Scholar 

  13. Lin, A. et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS ONE 8, e53838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Segal, S. & Hill, A. V. Genetic susceptibility to infectious disease. Trends Microbiol. 11, 445–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Akey, J. M. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 19, 711–722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marx, V. Biology: the big challenges of big data. Nature 498, 255–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Hellmann, I., Ebersberger, I., Ptak, S. E., Paabo, S. & Przeworski, M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet. 72, 1527–1535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Albrechtsen, A., Nielsen, F. C. & Nielsen, R. Ascertainment biases in SNP chips affect measures of population divergence. Mol. Biol. Evol. 27, 2534–2547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genet. 41, 657–665 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Ronald, J. & Akey, J. M. Genome-wide scans for loci under selection in humans. Hum. Genom. 2, 113–125 (2005).

    Article  CAS  Google Scholar 

  24. Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet. 4, 99–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Fu, W. & Akey, J. M. Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. Genet. 14, 467–489 (2013).

    Article  CAS  Google Scholar 

  26. Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005). This study shows that investigating targets of pathogen-driven selection leads to immunological discoveries and possible new therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Deagle, B. E. et al. Population genomics of parallel phenotypic evolution in stickleback across stream–lake ecological transitions. Proc. Biol. Sci. 279, 1277–1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernandez, R. D. et al. Classic selective sweeps were rare in recent human evolution. Science 331, 920–924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pritchard, J. K., Pickrell, J. K. & Coop, G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20, R208–R215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Granka, J. M. et al. Limited evidence for classic selective sweeps in African populations. Genetics 192, 1049–1064 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Williamson, S. H. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nature Genet. 40, 340–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Bhatia, G. et al. Genome-wide comparison of African-ancestry populations from CARe and other cohorts reveals signals of natural selection. Am. J. Hum. Genet. 89, 368–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grossman, S. R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. McClelland, E. E., Penn, D. J. & Potts, W. K. Major histocompatibility complex heterozygote superiority during co-infection. Infect. Immun. 71, 2079–2086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aguilar, A. et al. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl. Acad. Sci. USA 101, 3490–3494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prugnolle, F. et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 15, 1022–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. de Bakker, P. I. & Raychaudhuri, S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet. 21, R29–R36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hindorff, L. A. et al. Potential aetiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fellay, J. et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 5, e1000791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Limou, S. et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J. Infect. Dis. 199, 419–426 (2009).

    Article  PubMed  Google Scholar 

  52. Zhang, F. R. et al. Genomewide association study of leprosy. N. Engl. J. Med. 361, 2609–2618 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. LeishGEN Consortium et al. Common variants in the HLA-DRB1–HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nature Genet. 45, 208–213 (2013).

  54. Kamatani, Y. et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nature Genet. 41, 591–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Mbarek, H. et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 20, 3884–3892 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Nishida, N. et al. Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS ONE 7, e39175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duggal, P. et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med. 158, 235–245 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen, D. et al. Genome-wide association study of HPV seropositivity. Hum. Mol. Genet. 20, 4714–4723 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Hanchard, N. A. et al. Screening for recently selected alleles by analysis of human haplotype similarity. Am. J. Hum. Genet. 78, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Hanchard, N. et al. Classical sickle β-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations. BMC Genet. 8, 52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andres, A. M. et al. Targets of balancing selection in the human genome. Mol. Biol. Evol. 26, 2755–2764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Klein, J., Satta, Y., O'hUigin, C. & Takahata, N. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol. 11, 269–295 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Segurel, L. et al. The ABO blood group is a trans-species polymorphism in primates. Proc. Natl. Acad. Sci. USA 109, 18493–18498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olofsson, S. & Bergstrom, T. Glycoconjugate glycans as viral receptors. Ann. Med. 37, 154–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Day, C. J., Semchenko, E. A. & Korolik, V. Glycoconjugates play a key role in Campylobacter jejuni infection: interactions between host and pathogen. Front. Cell. Infect. Microbiol. 2, 9 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ko, W.-Y. et al. Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malaria-endemic African populations. Am. J. Hum. Genet. 88, 741–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Barua, D. & Paguio, A. S. ABO blood groups and cholera. Ann. Hum. Biol. 4, 489–492 (1977).

    Article  CAS  PubMed  Google Scholar 

  70. Harris, J. B. et al. Susceptibility to Vibrio cholerae Infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl. Trop. Dis. 2, e221 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genom. Inform 10, 117–122 (2012).

    Article  Google Scholar 

  73. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hill, A. V. Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Phil. Trans. R. Soc. B 367, 840–849 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Siontis, K. C., Patsopoulos, N. A. & Ioannidis, J. P. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur. J. Hum. Genet. 18, 832–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thye, T. et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nature Genet. 42, 739–741 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Qu, H. Q., Li, Q., McCormick, J. B. & Fisher-Hoch, S. P. What did we learn from the genome-wide association study for tuberculosis susceptibility? J. Med. Genet. 48, 217–218 (2011).

    Article  PubMed  Google Scholar 

  78. Qu, H. Q., Fisher-Hoch, S. P. & McCormick, J. B. Knowledge gaining by human genetic studies on tuberculosis susceptibility. J. Hum. Genet. 56, 177–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Kaslow, R. A., McNicholl, J. & Hill, A. V. S. Genetic Susceptibility to Infectious Diseases (Oxford Univ. Press, 2008).

    Google Scholar 

  80. Roeder, K., Bacanu, S. A., Wasserman, L. & Devlin, B. Using linkage genome scans to improve power of association in genome scans. Am. J. Hum. Genet. 78, 243–252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ayodo, G. et al. Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am. J. Hum. Genet. 81, 234–242 (2007). This paper shows that signals of positive selection can increase power to detect associations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, D. J. et al. Sequence-based association and selection scans identify drug resistance loci in the Plasmodium falciparum malaria parasite. Proc. Natl. Acad. Sci. USA 109, 13052–13057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Daub, J. T. et al. Evidence for polygenic adaptation to pathogens in the human genome. Mol. Biol. Evol. 30, 1544–1558 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, P. H. et al. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the aetiology of major depressive disorder. Transl. Psychiatry 2, e184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. Nature Rev. Genet. 11, 843–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  88. Kudaravalli, S., Veyrieras, J. B., Stranger, B. E., Dermitzakis, E. T. & Pritchard, J. K. Gene expression levels are a target of recent natural selection in the human genome. Mol. Biol. Evol. 26, 649–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Raj, T. et al. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 92, 517–529 (2013). This paper presents a systems-based analysis that integrates GWAS, selection, functional data and eQTL mapping.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nature Biotech. 30, 271–277 (2012).

    Article  CAS  Google Scholar 

  93. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Rev. Genet. 14, 618–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Schneider, T., Kreutz, J. & Chiu, D. T. The potential impact of droplet microfluidics in biology. Anal. Chem. 85, 3476–3482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Hindorff, L. A. et al. Potential aetiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y. et al. The lactase persistence/non-persistence polymorphism is controlled by a cis-acting element. Hum. Mol. Genet. 4, 657–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Coop, G. et al. The role of geography in human adaptation. PLoS Genet. 5, e1000500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. World Health Organization. World Malaria Report 2011. WHO [online], (2011).

  104. Hartl, D. L. The origin of malaria: mixed messages from genetic diversity. Nature Rev. Microbiol. 2, 15–22 (2004).

    Article  CAS  Google Scholar 

  105. Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

    Article  CAS  PubMed  Google Scholar 

  106. Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet. 10, 224–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Shimizu, Y. et al. Sero- and molecular typing of Duffy blood group in Southeast Asians and Oceanians. Hum. Biol. 72, 511–518 (2000).

    CAS  PubMed  Google Scholar 

  108. Menard, D. et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc. Natl. Acad. Sci. USA 107, 5967–5971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Menard, D. et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl. Trop. Dis. 7, e2489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Teo, Y.-Y., Small, K. S. & Kwiatkowski, D. P. Methodological challenges of genome-wide association analysis in Africa. Nature Rev. Genet. 11, 149–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Timmann, C. et al. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489, 443–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Band, G. et al. Imputation-based meta-analysis of severe malaria in three African populations. PLoS Genet. 9, e1003509 (2013). This study presents new methods for tackling complex GWASs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Achidi, E. A. et al. A global network for investigating the genomic epidemiology of malaria. Nature 456, 732–737 (2008).

    Article  CAS  Google Scholar 

  114. van Brakel, W. H. Measuring leprosy stigma — a preliminary review of the leprosy literature. Int. J. Lepr. Other Mycobact. Dis. 71, 190–197 (2003).

    Article  PubMed  Google Scholar 

  115. Rao, P. S. et al. Disability adjusted working life years (DAWLYs) of leprosy affected persons in India. Indian J. Med. Res. 137, 907–910 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Guinto, R. S., Doull, J. A. & De Guia, L. Mortality of persons with leprosy before sulphone therapy, Cordova and Talisay, Cebu, Philippines. Int. J. Lepr 22, 273–284 (1954).

    CAS  PubMed  Google Scholar 

  117. Saporta, L. & Yuksel, A. Androgenic status in patients with lepromatous leprosy. Br. J. Urol. 74, 221–224 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Leal, A. M. & Foss, N. T. Endocrine dysfunction in leprosy. Eur. J. Clin. Microbiol. Infect. Dis. 28, 1–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Monot, M. et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nature Genet. 41, 1282–1289 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, D. G. & Guinto, R. S. Leprosy and fertility. Hum. Biol. 50, 451–460 (1978).

    CAS  PubMed  Google Scholar 

  121. Jacobson, R. R. & Krahenbuhl, J. L. Leprosy. Lancet 353, 655–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Alter, A., Alcais, A., Abel, L. & Schurr, E. Leprosy as a genetic model for susceptibility to common infectious diseases. Hum. Genet. 123, 227–235 (2008).

    Article  PubMed  Google Scholar 

  123. Shields, E. D., Russell, D. A. & Pericak-Vance, M. A. Genetic epidemiology of the susceptibility to leprosy. J. Clin. Invest. 79, 1139–1143 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Boldsen, J. L. Leprosy in mediaeval Denmark — osteological and epidemiological analyses. Anthropol. Anz. 67, 407–425 (2009).

    Article  PubMed  Google Scholar 

  125. World Health Organization. Global leprosy situation. Weekly Epidemiol. Record 87, 317–328 [online], (2012).

  126. Zhang, F. et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nature Genet. 43, 1247–1251 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Wong, S. H., Hill, A. V., Vannberg, F. O. Genomewide association study of leprosy. N. Engl. J. Med. 362, 1446–1447; author reply 1447–1448 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Johnson, C. M. et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Wong, S. H. et al. Leprosy and the adaptation of human Toll-like receptor 1. PLoS Pathog. 6, e1000979 (2010). This paper shows selection for a leprosy protective variant in TLR1 in Europeans, which suggests a long host–pathogen relationship.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Barreiro, L. B. et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet. 5, e1000562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Reiley, W. W. et al. Regulation of T cell development by the deubiquitylating enzyme CYLD. Nature Immunol. 7, 411–417 (2006).

    Article  CAS  Google Scholar 

  132. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Wirth, T. et al. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 4, e1000160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 6, e311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moller, M. & Hoal, E. G. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis 90, 71–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Thye, T. et al. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nature Genet. 44, 257–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. World Health Organization. Global Tuberculosis Control 2011. WHO [online], (2011).

  139. Stein, C. M. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog. 7, e1001189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Global AIDS epidemic facts and figures. UNAIDS [online], (2013).

  141. Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455, 661–664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Worobey, M. et al. Island biogeography reveals the deep history of SIV. Science 329, 1487 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, R. et al. Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Stephens, J. C. et al. Dating the origin of the CCR5–Δ32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sabeti, P. C. et al. The case for selection at CCR5- Δ 32. PLoS Biol. 3, e378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thomas, R. et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nature Genet. 41, 1290–1294 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Apps, R. et al. Influence of HLA-C expression level on HIV control. Science 340, 87–91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Harris, J. B., LaRocque, R. C., Qadri, F., Ryan, E. T. & Calderwood, S. B. Cholera. Lancet 379, 2466–2476 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sack, D. A., Sack, R. B., Nair, G. B. & Siddique, A. K. Cholera. Lancet 363, 223–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Harris, J. B. et al. Cholera's western front. Lancet 376, 1961–1965 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lee, K. The global dimensions of cholera. Global Change Hum. Health 2, 6–17 (2001).

    Article  Google Scholar 

  155. Chowdhury, F. et al. Impact of rapid urbanization on the rates of infection by Vibrio cholerae O1 and enterotoxigenic Escherichia coli in Dhaka, Bangladesh. PLoS Negl. Trop. Dis 5, e999 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Mosley, W. H., McCormack, W. M., Ahmed, A., Chowdhury, A. K. & Barui, R. K. Report of the 1966–1967 cholera vaccine field trial in rural East Pakistan. 2. Results of the serological surveys in the study population — the relationship of case rate to antibody titre and an estimate of the inapparent infection rate with Vibrio cholerae. Bull. World Health Organ. 40, 187–197 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Glass, R. I. et al. Seroepidemiological studies of El Tor cholera in Bangladesh: association of serum antibody levels with protection. J. Infect. Dis. 151, 236–242 (1985).

    Article  CAS  PubMed  Google Scholar 

  158. Karlsson, E. K. et al. Natural selection in a Bangladeshi population from the cholera-endemic Ganges River Delta. Sci. Transl. Med. 5, 192ra86 (2013). This study uses selection for host resistance to historically localized pathogen to investigate immune response pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lee, P. H., O'Dushlaine, C., Thomas, B. & Purcell, S. M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hall, A. J. Noroviruses: the perfect human pathogens? J. Infect. Dis. 205, 1622–1624 (2012).

    Article  PubMed  Google Scholar 

  161. Patel, M. M. et al. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 14, 1224–1231 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol. 28, 3355–3365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Worobey, M., Bjork, A. & Wertheim, J. O. Point, counterpoint: the evolution of pathogenic viruses and their human hosts. Annu. Rev. Ecol. Evol. Syst. 38, 515–540 (2007).

    Article  Google Scholar 

  164. Emerman, M. & Malik, H. S. Paleovirology — modern consequences of ancient viruses. PLoS Biol. 8, e1000301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nature Med. 9, 548–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Carlsson, B. et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 Norovirus infection. PLoS ONE 4, e5593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nordgren, J., Kindberg, E., Lindgren, P.-E., Matussek, A. & Svensson, L. Norovirus gastroenteritis outbreak with a secretor-independent susceptibility pattern, Sweden. Emerg. Infecti. Diseases 16, 81 (2010).

    Article  CAS  Google Scholar 

  168. Ferrer-Admetlla, A. et al. A natural history of FUT2 polymorphism in humans. Mol. Biol. Evol. 26, 1993–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Taubenberger, J. K. & Morens, D. M. Influenza revisited. Emerg. Infecti. Diseases 12, 1 (2006).

    Article  Google Scholar 

  170. Johnson, N. P. & Mueller, J. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002).

    Article  PubMed  Google Scholar 

  171. Martin, P. M. & Martin-Granel, E. 2,500 year evolution of the term epidemic. Emerg. Infect. Dis. 12, 976–980 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Albright, F. S., Orlando, P., Pavia, A. T., Jackson, G. G. & Cannon Albright, L. A. Evidence for a heritable predisposition to death due to influenza. J. Infect. Dis. 197, 18–24 (2008).

    Article  PubMed  Google Scholar 

  173. Horby, P., Nguyen, N. Y., Dunstan, S. J. & Baillie, J. K. The role of host genetics in susceptibility to influenza: a systematic review. PLoS ONE 7, e33180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Everitt, A. R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, Y. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA 104, 15787–15792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Babkin, I. V. & Shelkunov, S. N. [Molecular evolution of poxviruses]. Genetika 44, 1029–1044 (in Russian) (2008).

    CAS  PubMed  Google Scholar 

  178. Esposito, J. J. et al. Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science 313, 807–812 (2006).

    Article  PubMed  Google Scholar 

  179. Ovsyannikova, I. G. et al. Genome-wide association study of antibody response to smallpox vaccine. Vaccine 30, 4182–4189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kennedy, R. B. et al. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum. Genet. 131, 1403–1421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Barreiro, L. B. & Quintana-Murci, L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nature Rev. Genet. 11, 17–30 (2010). This paper shows that pathogen-driven selection shaped the human genome.

    Article  CAS  PubMed  Google Scholar 

  182. Casto, A. M. & Feldman, M. W. Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations? PLoS Genet. 7, e1001266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hancock, A. M. et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 7, e1001375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hu, X. & Daly, M. What have we learned from six years of GWAS in autoimmune diseases, and what is next? Curr. Opin. Immunol. 24, 571–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Fumagalli, M. et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. 206, 1395–1408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLoS Genet. 5, e1000792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schenk, M. et al. NOD2 triggers an interleukin-32 dependent human dendritic cell program in leprosy. Nature Med. 18, 555–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Greco, L. et al. The first large population based twin study of coeliac disease. Gut 50, 624–628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dube, C. et al. The prevalence of coeliac disease in average-risk and at risk western European populations: a systematic review. Gastroenterology 128, S57–S67 (2005).

    Article  PubMed  Google Scholar 

  190. Catassi, C. et al. Why is coeliac disease endemic in the people of the Sahara? Lancet 354, 647–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Zhernakova, A. et al. Evolutionary and functional analysis of coeliac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am. J. Hum. Genet. 86, 970–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, e410 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 5, e1000491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nature Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nature Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Sainz, J. et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Mol. Psychiatry 18, 1056–1057 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Onore, C., Careaga, M. & Ashwood, P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun. 26, 383–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Spencer, C. C., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 5, e1000477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Png, E. et al. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Med. Genet. 13, 5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mahasirimongkol, S. et al. Genome-wide association studies of tuberculosis in Asians identify distinct at risk locus for young tuberculosis. J. Hum. Genet. 57, 363–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Petrovski, S. et al. Common human genetic variants and HIV-1 susceptibility: a genome-wide survey in a homogeneous African population. AIDS 25, 513–518 (2011).

    Article  PubMed  Google Scholar 

  202. Pelak, K. et al. Host determinants of HIV-1 control in African Americans. J. Infect. Dis. 201, 1141–1149 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Schaffner, E. Brown, D. Park, D. Neafsey, R. LaRocque and J. Harris for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elinor K. Karlsson or Pardis C. Sabeti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Catalog of published GWASs

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Pathogen GWASs in NHGRI GWAS catalog (https://www.genome.gov/26525384) as of April 15, 2014 (PDF 191 kb)

Glossary

Pathogens

Viruses, bacteria or other microorganisms that can cause disease.

Signatures of selection

An unusual pattern of allele frequencies that marks a selected locus.

Frequency

Prevalence of an allele in a population.

Genome-wide association studies

(GWASs). Examination of variants that are distributed across the entire genome for correlation with particular traits.

Next-generation sequencing

New high-throughput, parallelized, low-cost sequencing technologies that do not use the chain termination Sanger method.

Genetic diversity

Total amount of genetic variation in a population.

Bottlenecks

Sharp decreases in the effective sizes of populations.

Admixture

Interbreeding between two genetically separated populations.

Ascertainment bias

Nonrandom selection of variants for genotyping.

Neutral variation

Genetic variation that confers no selective advantage or disadvantage and that varies in frequency by random drift.

Linkage disequilibrium

(LD). The nonrandom association of alleles at different genomic loci.

Fixation

The increase in frequency of an allele to 100% in a population.

Standing variation

Existing genetic variation within a population.

Selective sweeps

Reductions in genetic variation caused by positive selection at particular loci.

Incomplete sweeps

Partial or ongoing selective sweeps of advantageous alleles to <100% prevalence.

Complete sweeps

Selective sweeps of advantageous alleles to 100% prevalence.

Candidate gene approach

Association study that tests only variants in a pre-specified set of genes.

Pathway-based approaches

Methods that test for joint association of genes in the same functional pathway.

Expression quantitative trait loci

(eQTLs). Genomic loci that regulate gene expression.

Imputation

Statistical prediction of missing genetic data.

Gene set enrichment

Overrepresentation of an a priori defined group of genes.

Pleiotropic effects

Effects on multiple unrelated phenotypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlsson, E., Kwiatkowski, D. & Sabeti, P. Natural selection and infectious disease in human populations. Nat Rev Genet 15, 379–393 (2014). https://doi.org/10.1038/nrg3734

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg3734

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology