Skip to main content
Advertisement
Main content starts here

Abstract

The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrockare observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

Access the full article

View all access options to continue reading this article.

Supplementary Material

File (christensen.pdf)

References and Notes

1
P. R. Christensen et al., Space Science Reviews, in press.
2
M. C. Malin, K. S. Edgett, Science290, 1927 (2000).
3
M. C. Malin, K. S. Edgett, J. Geophys. Res.106, 23429 (2001).
4
All infrared images presented here were acquired using Band 9 centered at 12.6 μm and are 32 km wide unless otherwise noted.
5
H. H. Kieffer, Science194, 1344 (1976).
6
H. H. Kieffer et al., J. Geophys. Res.82, 4249 (1977).
7
M. T. Mellon, B. M. Jakosky, H. H. Kieffer, P. R. Christensen, Icarus148, 437 (2000).
8
B. M. Jakosky et al., J. Geophys. Res.105, 9643 (2000).
9
R. E. Arvidson et al., J. Geophys. Res., in press.
10
P. R. Christensen, M. C. Malin, R. V. Morris, J. L. Bandfield, M. D. Lane, J. Geophys. Res.106, 23873 (2001).
11
M. A. Presley, P. R. Christensen, J. Geophys. Res.102, 6651 (1997).
12
P. R. Christensen, Icarus68, 217 (1986).
13
M. D. Lane, R. V. Morris, P. R. Christensen, S. A. Mertzman, J. Geophys. Res.107, DOI10.1029/2001JE001832 (2002).
14
A. H. Treiman, D. J. Lindstrom, J. Geophys. Res.102, 9153 (1997).
15
D. M. Burr, A. S. McEwen, S. E. H. Sakimoto, Geophys. Res. Lett.29, 4 (2002).
16
Rocks greater than ∼30 cm in diameter are ∼40 K warmer at night than materials with a Mars average thermal inertia. Smaller rocks approach the temperature of particulate material and require proportionately higher abundances to account for the observed temperature increases.
17
R. Sullivan, P. Thomas, J. Veverka, M. Malin, K. S. Edgett, J. Geophys. Res.106, 23607 (2001).
18
M. H. Carr et al., J. Geophys. Res.91, 3533 (1977).
19
P. Mouginis-Mark, J. Geophys. Res.84, 8011 (1979).
20
R. W. Shorthill, The Moon7, 22 (1973).
21
F. D. Palluconi, H. H. Kieffer, Icarus45, 415 (1981).
22
P. R. Christensen, H. J. Moore, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (University of Arizona Press, Tucson, AZ, 1992), pp. 686–729.
23
P. R. Christensen, J. L. Bandfield, M. D. Smith, V. E. Hamilton, R. N. Clark, J. Geophys. Res.105, 9609 (2000).
24
J. L. Bandfield, V. E. Hamilton, P. R. Christensen, Science287, 1626 (2000).
25
J. L. Bandfield, J. Geophys. Res.107, 10.1029/2001JE001510 (2002).
26
S. W. Ruff, P. R. Christensen, J. Geophys. Res.107, 10.1029/2001JE001580 (2002).
27
T. N. Titus, H. H. Kieffer, P. R. Christensen, Science299, 1048 (2002).
28
S. H. Williams, J. R. Zimbelman, Geology22, 107 (1994).
29
S. W. Ruff et al., J. Geophys. Res.106, 23921 (2001).
30
H. Y. McSween Jr. et al., J. Geophys. Res.104, 8679 (1999).
31
J. F. Bell III et al., J. Geophys. Res105, 1721 (2000).
32
A. R. Gillespie, A. B. Kahle, R. E. Walker, Remote Sensing Environ.20, 209 (1986).
33
We would like to sincerely thank all those at Raytheon Santa Barbara Remote Sensing who built the THEMIS instrument, and those at the NASA Jet Propulsion Laboratory, Lockheed Martin Astronautics, and Arizona State University, who built and operate the Odyssey spacecraft. This work was supported by the NASA Mars Odyssey Flight Project.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();