Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/9bbd0039876bb74a025be73e3b6425d3.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Predictive Self-Assembly of Polyhedra into Complex Structures | Science
Skip to main content
Advertisement
Main content starts here
No access
Report

Predictive Self-Assembly of Polyhedra into Complex Structures

Science
27 Jul 2012
Vol 337, Issue 6093
pp. 453-457

Getting Packed

If one neglects the role of specific interactions, the packing of similar-shaped objects will depend only on the particular shape of the object. Damasceno et al. (p. 453; see the Perspective by de Graaf and Manna) present computer simulations of the behavior of different types of polyhedra with simple and complex shapes that are packed under thermal equilibrium into various structures, from crystals to amorphous materials through liquid crystals. Despite the wide variety of starting shapes, the packing behavior could be quantitatively described using just two criteria; one for the particle shape as a function of its volume and surface area, and one for the number of nearest neighbors.

Abstract

Predicting structure from the attributes of a material’s building blocks remains a challenge and central goal for materials science. Isolating the role of building block shape for self-assembly provides insight into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses. We investigated 145 convex polyhedra whose assembly arises solely from their anisotropic shape. Our results demonstrate a remarkably high propensity for thermodynamic self-assembly and structural diversity. We show that from simple measures of particle shape and local order in the fluid, the assembly of a given shape into a liquid crystal, plastic crystal, or crystal can be predicted.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S3
Table S1
References (42, 43)

Resources

File (1220869.damasceno.sm.pdf)
File (1220869.damasceno.sm.revision1.pdf)
File (453.mp3)

References and Notes

1
Pauling L., The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010 (1929).
2
Li F., Josephson D. P., Stein A., Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360 (2011).
3
Glotzer S. C., Solomon M. J., Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557 (2007).
4
Quan Z., Fang J., Superlattices with non-spherical building blocks. Nano Today 5, 390 (2010).
5
Huang M. H., Lin P.-H., Shape-controlled synthesis of polyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 22, 14 (2012).
6
Alder B. J., Wainwright T. E., Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208 (1957).
7
Eldridge M. D., Madden P. A., Frenkel D., Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35 (1993).
8
Onsager L., The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 51, 627 (1949).
9
Frenkel D., Lekkerkerker H. N. W., Stroobants A., Thermodynamic stability of a smectic phase in a system of hard rods. Nature 332, 822 (1988).
10
Frenkel D., Mulder B. M., The hard ellipsoid-of-revolution fluid. Mol. Phys. 55, 1171 (1985).
11
Haji-Akbari A., et al., Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773 (2009).
12
Agarwal U., Escobedo F. A., Mesophase behaviour of polyhedral particles. Nat. Mater. 10, 230 (2011).
13
Henzie J., Grünwald M., Widmer-Cooper A., Geissler P. L., Yang P., Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131 (2011).
14
Damasceno P. F., Engel M., Glotzer S. C., Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609 (2012).
15
Ni R., Gantapara A. P., de Graaf J., van Roij R., Dijkstra M., Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra. http://dx.doi.org/10.1039/C2SM25813G.
16
Smallenburg F., Filion L., Marechal M., Dijkstra M., Vacancy-stabilized crystalline order in hard cubes. http://arXiv.org/abs/1111.3466.
17
Rossi L., et al., Cubic crystals from cubic colloids. Soft Matter 7, 4139 (2011).
18
Frenkel D., Entropy-driven phase transitions. Physica A 263, 26 (1999).
19
Torquato S., Jiao Y., Dense packings of the Platonic and Archimedean solids. Nature 460, 876 (2009).
20
Young K. L., et al., Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Natl. Acad. Sci. U.S.A. 109, 2240 (2012).
21
Materials and methods are available as supplementary materials on Science Online.
22
Zhao K., Bruinsma R., Mason T. G., Entropic crystal-crystal transitions of Brownian squares. Proc. Natl. Acad. Sci. U.S.A. 108, 2684 (2011).
23
Zhang Y., Lu F., van der Lelie D., Gang O., Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 107, 135701 (2011).
24
Haji-Akbari A., Engel M., Glotzer S. C., Degenerate quasicrystal of hard triangular bipyramids. Phys. Rev. Lett. 107, 215702 (2011).
25
Blunt M. O., et al., Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077 (2008).
26
Gerbode S. J., Lee S. H., Liddell C. M., Cohen I., Restricted dislocation motion in crystals of colloidal dimer particles. Phys. Rev. Lett. 101, 058302 (2008).
27
Marechal M., Kortschot R. J., Demirörs A. F., Imhof A., Dijkstra M., Phase behavior and structure of a new colloidal model system of bowl-shaped particles. Nano Lett. 10, 1907 (2010).
28
Ungar G., Liu Y., Zeng X., Percec V., Cho W.-D., Giant supramolecular liquid crystal lattice. Science 299, 1208 (2003).
29
Lee S., Bluemle M. J., Bates F. S., Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science 330, 349 (2010).
30
Talapin D. V., et al., Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964 (2009).
31
Although “rotator phases” constitute a subset of “plastic crystals” in molecular materials, the terms are used synonymously for hard particles.
32
Ziherl P., Kamien R. D., Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 105, 10147 (2001).
33
Elenius M., Zetterling F., Dzugutov M., Fredrickson D., Lidin S., Structural model for octagonal quasicrystals derived from octagonal symmetry elements arising in β-Mn crystallization of a simple monatomic liquid. Phys. Rev. B 79, 144201 (2009).
34
de Graaf J., van Roij R., Dijkstra M., Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).
35
Haji-Akbari A., Engel M., Glotzer S. C., Phase diagram of hard tetrahedra. J. Chem. Phys. 135, 194101 (2011).
36
G. Polya, Induction and Analogy in Mathematics (Princeton Univ. Press, Princeton, NJ, 1954), pp. 188–189.
37
Miller W. L., Cacciuto A., On the phase behavior of hard aspherical particles. J. Chem. Phys. 133, 234903 (2010).
38
Nezbeda I., Virial expansion and an improved equation of state for the hard convex molecule system. Chem. Phys. Lett. 41, 55 (1976).
39
G. S. Rohrer, Structure and Bonding in Crystalline Materials (Cambridge Univ. Press, Cambridge, 2004).
40
J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Waltham, MA, 2010), pp. 535–576.
41
Woodley S. M., Catlow R., Crystal structure prediction from first principles. Nat. Mater. 7, 937 (2008).
42
Johnson N. W., Convex polyhedra with regular faces. Canadian Journal of Mathematics 18, 169 (1966).
43
Gilbert E. G., Johnson D. W., Keerthi S. S., A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4, 193 (1988).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();