Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/e744c6c16110cf358f809b0c13bd3b57.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary | Science
Skip to main content
Advertisement
Main content starts here

Impact Dating

The large mass extinction of terrestrial and marine life—most notably, non-avian dinosaurs—occurred around 66 million years ago, at the boundary between the Cretaceous and Paleogene periods. But attributing the cause to a large asteroid impact depends on precisely dating material from the impact with indicators of ecological stress and environmental change in the rock record. Renne et al. (p. 684; see the Perspective by Pälike) acquired high-precision radiometric dates of stratigraphic layers surrounding the boundary, demonstrating that the impact occurred within 33,000 years of the mass extinction. The data also constrain the length of time in which the atmospheric carbon cycle was severely disrupted to less than 5000 years. Because the climate in the late Cretaceous was becoming unstable, the large-impact event appears to have triggered a state-shift in an already stressed global ecosystem.

Abstract

Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present 40Ar/39Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S7
Tables S1 to S4
References (4266)

Resources

File (renne_sm.pdf)
File (table_s1.xlsx)
File (table_s2.xlsx)
File (table_s3.xlsx)
File (table_s4.xlsx)

References and Notes

1
Schulte P., et al., The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214 (2010).
2
Archibald J. D., et al., Cretaceous extinctions: Multiple causes. Science 328, 973–, author reply 975 (2010).
3
Courtillot V., Fluteau F., Cretaceous extinctions: The volcanic hypothesis. Science 328, 973–, author reply 975 (2010).
4
Keller G., et al., Cretaceous extinctions: Evidence overlooked. Science 328, 974–, author reply 975 (2010).
5
Arens N. C., West I. D., Press-pulse: A general theory of mass extinction? Paleobiology 34, 456 (2008).
6
Sigurdsson H., et al., Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353, 839 (1991).
7
Maurrasse F. J., Sen G., Impacts, tsunamis, and the haitian cretaceous-tertiary boundary layer. Science 252, 1690 (1991).
8
Hildebrand A. R., et al., Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867 (1991).
9
Uncertainties here and throughout are stated at the 68% confidence level.
10
Keller G., et al., Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas. Earth Planet. Sci. Lett. 255, 339 (2007).
11
Uncertainties given as ±X/Y refer to values excluding (X) and including (Y) systematic sources as defined in the supplementary materials.
12
Swisher C. C., et al., Coeval 40Ar/39Ar Ages of 65.0 million years ago from Chicxulub Crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257, 954 (1992).
13
Dalrymple G. B., Izett G. A., Snee L. W., Obradovich J. D., U.S. Geol. Surv. Bull. 2065, 1 (1993).
14
Smit J., van der Kaars S., Terminal cretaceous extinctions in the hell creek area, montana: Compatible with catastrophic extinction. Science 223, 1177 (1984).
15
Swisher C. C., Dingus L., Butler R. F., 40Ar/39Ar dating and magnetostratigraphic correlation of the terrestrial Cretaceous–Paleogene boundary and Puercan Mammal Age, Hell Creek–Tullock formations, eastern Montana. Can. J. Earth Sci. 30, 1981 (1993).
16
Baadsgaard H., Lerbekmo J. F., McDougall I., Can. J. Earth Sci. 25, 1088 (1988).
17
Renne P. R., Balco G., Ludwig K. R., Mundil R., Min K., Response to the comment by W. H. Schwarz et al. on "Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology" by P. R. Renne et al. (2010). Geochim. Cosmochim. Acta 75, 5097 (2011).
18
Laskar J., et al., A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261 (2004).
19
Kuiper K. F., et al., Synchronizing rock clocks of Earth history. Science 320, 500 (2008).
20
Husson D., et al., Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth Planet. Sci. Lett. 305, 328 (2011).
21
Westerhold T., Rohl U., Laskar J., Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochem. Geophys. Geosyst. 13, Q06015 (2012).
22
W. A. Clemens, in The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous, J. H. Hartman, K. R. Johnson, D. J. Nichols, Eds. (Geological Society of America, Boulder, CO, 2002), vol. 361, pp. 217–245.
23
Avise J. C., Walker D., Johns G. C., Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B Biol. Sci. 265, 1707 (1998).
24
Arens N. C., Jahren A. H., Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary Boundary: Evidence from terrestrial sediments. Palaios 15, 314 (2000).
25
Smit J., Geol. Mijnb. 69, 187 (1990).
26
D'Hondt S., Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295 (2005).
27
Li L. Q., Keller G., Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Mar. Micropaleontol. 33, 55 (1998).
28
E. Barrera, S. M. Savin, in Evolution of the Cretaceous Ocean-Climate System, E. Barrera, C. C. Johnson, Eds. (Geological Society of America, Boulder, CO, 1999), vol. 332, pp. 245–282.
29
Wilf P., Johnson K. R., Huber B. T., Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci. U.S.A. 100, 599 (2003).
30
Wilson G. P., Mammalian faunal dynamics during the last 1.8 million years of the Cretaceous in Garfield County, Montana. J. Mamm. Evol. 12, 53 (2005).
31
E. C. Murphy, J. W. Hoganson, K. R. Johnson, in The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous, J. H. Hartman, K. R. Johnson, D. J. Nichols, Eds. (Geological Society of America, Boulder, CO, 2002), pp. 9–34.
32
Miller K. G., et al., The Phanerozoic record of global sea-level change. Science 310, 1293 (2005).
33
Barnosky A. D., et al., Approaching a state shift in Earth's biosphere. Nature 486, 52 (2012).
34
Scheffer M., et al., Early-warning signals for critical transitions. Nature 461, 53 (2009).
35
Self S., The effects and consequences of very large explosive volcanic eruptions. Philos. Trans. R. Soc. Lond. A 364, 2073 (2006).
36
Chenet A. L., et al., Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophys. Res. Solid Earth 114, B06103 (2009).
37
Keller G., Cretaceous climate, volcanism, impacts, and biotic effects. Cretac. Res. 29, 754 (2008).
38
Courtillot V. E., Renne P. R., On the ages of flood basalt events. C. R. Geosci. 335, 113 (2003).
39
Robinson N., Ravizza G., Coccioni R., Peucker-Ehrenbrink B., Norris R., A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet. Sci. Lett. 281, 159 (2009).
40
T. S. Tobin et al., Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352‚ 180 (2012).
41
Alvarez L. W., Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago. Proc. Natl. Acad. Sci. U.S.A. 80, 627 (1983).
42
Renne P. R., Cassata W. S., Morgan L. E., The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: Time for a change? Quat. Geochronol. 4, 288 (2009).
43
Lee J. Y., et al., A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507 (2006).
44
Stoenner R. W., Schaeffer O. A., Katcoff S., Half-Lives of Argon-37, Argon-39, and Argon-42. Science 148, 1325 (1965).
45
Renne P. R., Norman E. B., Determination of the half-life of 37Ar by mass spectrometry. Phys. Rev. C Nucl. Phys. 63, 047302 (2001).
46
Renne P. R., Sharp Z. D., Heizler M. T., Cl-derived argon isotope production in the CLICIT facility of OSTR reactor and the effects of the Cl-correction in 40Ar/39Ar geochronology. Chem. Geol. 255, 463 (2008).
47
Renne P. R., Mundil R., Balco G., Min K. W., Ludwig K. R., Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 74, 5349 (2010).
48
Gerstenberger H., Haase G., A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309 (1997).
49
Mundil R., Ludwig K. R., Metcalfe I., Renne P. R., Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760 (2004).
50
Mattinson J. M., Zircon U–Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47 (2005).
51
Irmis R. B., Mundil R., Martz J. W., Parker W. G., High-resolution U–Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth Planet. Sci. Lett. 309, 258 (2011).
52
Izett G. A., Dalrymple G. B., Snee L. W., 40Ar/39Ar age of Cretaceous-Tertiary boundary tektites from Haiti. Science 252, 1539 (1991).
53
Renne P. R., et al., Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 145, 117 (1998).
54
Keller G., Stinnesbeck W., Adatte T., Stuben D., Multiple impacts across the Cretaceous–Tertiary boundary. Earth Sci. Rev. 62, 327 (2003).
55
Retallack G. J., A pedotype approach to latest Cretaceous and earliest Tertiary paleosols in eastern Montana. Geol. Soc. Am. Bull. 106, 1377 (1994).
56
Sheehan P. M., Fastovsky D. E., Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20, 556 (1992).
57
J. D. Archibald, A Study of Mammalia and Geology Across the Cretaceous-Tertiary Boundary in Garfield County, Montana, Univ. of California Publications in Geological Sciences (Univ of California Press, Berkeley, 1982), vol. 122.
58
D. L. Lofgren, The Bug Creek Problem and the Cretaceous-Tertiary Transition at McGuire Creek, Montana, Univ. of California Publications in Geological Sciences (Univ. of California Press, Berkeley, 1995), vol. 140.
59
Fastovsky D. E., Dott R. H., Sedimentology, stratigraphy, and extinctions during the Cretaceous-Paleogene transition at Bug Creek, Montana. Geology 14, 279 (1986).
60
Dinarés-Turell J., et al., Untangling the Palaeocene climatic rhythm: An astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain). Earth Planet. Sci. Lett. 216, 483 (2003).
61
Westerhold T., et al., Astronomical calibration of the Paleocene time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 377 (2008).
62
Rivera T. A., Storey M., Zeeden C., Hilgen F. J., Kuiper K., A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth Planet. Sci. Lett. 311, 420 (2011).
63
Laskar J., Fienga A., Gastineau M., Manche H., Astron. Astrophys. 532, A89 (2011).
64
Channell J. E. T., Hodell D. A., Singer B. S., Xuan C., Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem. Geophys. Geosyst. 11, Q0AA12 (2010).
65
Hilgen F. J., Kuiper K. F., Lourens L. J., Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth Planet. Sci. Lett. 300, 139 (2010).
66
N. Vandenberghe, R. Speijer, F. J. Hilgen, in The Geologic Time Scale 2012, F. J. Gradstein, J. G. Ogg, M. D. Schmitz, G. Ogg, Eds. (Elsevier, Amsterdam, 2012), vol. 2.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();