Notice: file_put_contents(): Write of 359493 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Earth's Core and the Geodynamo | Science
Skip to main content
Advertisement
Main content starts here

Abstract

Earth's magnetic field is generated by fluid motion in the liquid iron core. Details of how this occurs are now emerging from numerical simulations that achieve a self-sustaining magnetic field. Early results predict a dominant dipole field outside the core, and some models even reproduce magnetic reversals. The simulations also show how different patterns of flow can produce similar external fields. Efforts to distinguish between the various possibilities appeal to observations of the time-dependent behavior of the field. Important constraints will come from geological records of the magnetic field in the past.

Access the full article

View all access options to continue reading this article.

REFERENCES AND NOTES

1
Theoretical calculations for liquid iron at the physical conditions of Earth's core predict a viscosity of μ = 10–2 Pa s [
de Wijs G. A., et al., Nature 392, 805 (1998);
]. The kinematic viscosity ν = μ/ρ of iron, where ρ is the fluid density, is comparable to the value for water.
2
Fluid velocities at the top of the core are inferred from time variations in the magnetic field. A review of the theory and observations is given by J. Bloxham and A. Jackson [Rev. Geophys. 29, 97 (1991)].
3
Glatzmaier G. A., Roberts P. H., Phys. Earth Planet. Inter. 91, 63 (1995).
4
Kuang W., Bloxham J., Nature 389, 371 (1997).
5
Kageyama A., Sato T., Phys. Rev. E 55, 4617 (1998);
Sakuraba A., Kono M., Phys. Earth Planet. Inter. 111, 105 (1998);
Olson P., Christensen U., Glatzmaier G. A., J. Geophys. Res. 104, 10383 (1999);
Grote E., Busse F. H., Tilgner A., Phys. Earth Planet. Inter. 117, 259 (2000).
6
Detection of magnetized rocks in ancient parts of the crust on Mars indicate that the planet once had a magnetic field. The absence of magnetization in younger rocks suggests that the internal dynamo ceased early in the history of Mars [
Acuna M. H., et al., Science 284, 794 (1999);
]. There is no evidence of a magnetic field on Venus at the present time and its surface temperature is too high to preserve a record of a former magnetic field [
Russell C. T., J. Geophys. Res. 98, 18681 (1993)].
7
Stevenson D. J., Science 287, 997 (2000).
8
Gubbins D., Masters T. G., Jacobs J. A., Geophys. J. R. Astron. Soc. 59, 57 (1979).
9
Constraints on the timing of core formation are derived from radioisotopic dating methods. Early studies relied on measurements of Pb isotopes [
Overby X., Ringwood X., Nature 234, 463 (1971);
], whereas more recent work has focused on the products of short-lived radionuclides. Interpretation of tungsten isotopes suggest that core formation was effectively completed 60 million years after the start of accretion [
Halliday A. N., Lee D. C., Geochim. Cosmochim. Acta 63, 4157 (1999)].
10
Pierazzo E., Vickery A. M., Melosh H. J., Icarus 127, 408 (1997).
11
Flasar F. M., Birch F., J. Geophys. Res. 78, 6101 (1973).
12
Tschauner O., et al., Nature 398, 604 (1999).
13
Chabot N. L., Drake M. J., Earth Planet. Sci. Lett. 173, 361 (1999).
14
Parker L. J., Atou T., Badding J. V., Science 273, 95 (1996).
15
Righter K., Drake M. J., Yaxley G., Phys. Earth Planet. Inter. 100, 115 (1997).
16
Kennett B. L. N., Geophys. J. Int. 132, 374 (1998).
17
McQueen R. G., Marsh S. P., J. Geophys. Res. 71, 1751 (1966).
18
Poirier J.-P., Phys. Earth Planet Sci. 85, 319 (1994).
19
Williams Q., Knittle E., Phys. Earth Planet. Inter. 100, 49 (1997).
20
Jephcoat A., Olson P., Nature 325, 332 (1987).
21
The stable phase of iron at pressure and temperature conditions of the inner core is thought to be a hexagonal close-packed structure [
Stixrude L., Cohen R. E., Geophys. Res. Lett. 22, 125 (1997)].
22
Stixrude L., Wasserman E., Cohen R. E., J. Geophys. Res. 102, 24729 (1997).
23
A. Laio et al., Science 287 1027 (2000).
24
S. I. Braginsky, Dokl. Akad. Nauk SSSR149 1311 (1963).
25
___, Roberts P. H., Geophys. Astrophys. Fluid Dyn. 79, 1 (1995).
26
Buffett B. A., Huppert H. E., Lister J. R., Woods A. W., J. Geophys. Res. 101, 7989 (1996).
27
Sleep N. H., J. Geophys. Res. 95, 6715 (1990);
Loper D. E., Geomagn. Geoelect. 43, 79 (1991).
28
Loper D. E., J. Geophys. Res. 83, 5961 (1978).
29
Labrosse S., Poirier J. P., LeMouel J. L., Phys. Earth Planet. Inter. 99, 1 (1997);
Lister J. R., Buffett B. A., Phys. Earth Planet. Inter. 105, 5 (1998).
30
Loper D. E., Geophys. J. R. Astron. Soc. 54, 389 (1978).
31
Lister J. R., Buffett B. A., Phys. Earth Planet. Inter. 91, 17 (1995).
32
Stevenson D. J., Spohn T., Schubert G., Icarus 54, 466 (1983).
33
McElhinney T. N. W., Senanayake W. E., J. Geophys. Res. 85, 3523 (1980).
34
The characteristic time τ for ohmic decay of the magnetic field in the absence of fluid motions is τ = L22 η, where L is the characteristic length scale for the magnetic field and η is the magnetic diffusivity. The radius of the core is a representative length scale, so we let L = 3 × 106 m and η = 2 m2 s−1. This gives τ = 1.5 × 104 years.
35
Olson P., Glatzmaier G. A., Phys. Earth Planet. Inter. 92, 109 (1995).
36
Recent reviews of the geodynamo are given by R. Hollerbach [Phys. Earth Planet. Inter. 98, 163 (1996)], D. R. Fearn [Rep. Prog. Phys. 61, 175 (1998)], and F. H. Busse [Annu. Rev. Fluid Mech.32, 383 (2000)].
37
A recent review of the work of G. I. Taylor by M. P. Brenner and H. A. Stone [Physics Today53, 30 (2000)] includes a photograph that clearly demonstrates the columnar pattern of flow in a rapidly rotating fluid. The photograph is taken from the study of J. W. M. Bush, H. A. Stone, and J. Bloxham [J. Fluid Mech.282, 247 (1995)].
38
Phillips N. A., Rev. Geophys. 1, 123 (1963).
39
The dynamical state of the core may be approximated by a geostrophic balance that is disturbed by the addition of buoyancy forces, as well as magnetic and viscous forces. From the radial component of the curl of the leading-order force balance, we find that radial flow is not possible unless the magnetic and/or viscous forces are present.
40
Convection in a rapidly rotating fluid with no magnetic forces takes the form of narrow rolls that align with the rotation axis. The aspect ratio of the rolls is about E1/3 to 1, where E ≈ 10–15 is the Ekman number [
Roberts P. H., Philos. Trans. R. Soc. London A 263, 93 (1963)].
41
The importance of the Lorentz force in the force balance is measured relative to the Coriolis force. These two forces become comparable when the magnetic field is nominally 10–3 T.
42
Zhang K., Gubbins D., Geophys. J. Int. 140, F1 (2000).
43
Langereis C. G., et al., Geophys. J. Int. 129, 75 (1997).
44
Braginsky S. I., Meytlis V. P., Geophys. Astrophys. Fluid Dyn. 55, 71 (1990).
45
Fearn D. R., Proctor M. R. E., Sellars C. C., Geophys. Astrophys. Fluid Dyn. 77, 111 (1994).
46
Glatzmaier G. A, Roberts P. H., Physica D 97, 81 (1996).
47
Aurnou J. M., Brito D., Olson P., Geophys. Res. Lett. 23, 3401 (1996).
48
Glatzmaier G. A., Roberts P. H., Science 274, 1887 (1996).
49
B. A. Buffett and G. A. Glatzmaier, in preparation.
50
Zhang K., Jones C. A., Geophys. Res. Lett. 24, 2869 (1997);
___, Sarson G. R., Stud. Geophys. Geod. 42, 247 (1998).
51
Christensen U., Olson P., Glatzmaier G. A., Geophys. Res. Lett. 25, 1565 (1998).
52
Gubbins D., Bloxham J., Nature 325, 509 (1987).
53
Merrill R. T., McFadden P. L., Rev. Geophys. 37, 201 (1999).
54
Cox A., Rev. Geophys. 13, 35 (1975).
55
Jault D., Hulot G., LeMouel J. L., Phys. Earth Planet. Inter. 98, 1987 (1996);
Zatman S., Bloxham J., Nature 388, 760 (1997).
56
Kelly P., Gubbins D., Geophys. J. Int. 128, 315 (1997);
Johnson C. L., Constable C. G., Geophys. J. Int. 131, 643 (1997).
57
Lay T., Williams Q., Garnero E. J., Nature 392, 461 (1998).
58
Bloxham J., Gubbins D., Nature 325, 511 (1987).
59
Zhang K., Gubbins D., Phys. Fluids 8, 1141 (1996);
Sarson G. R., Jones C. A., Longbottom A. W., Phys. Earth Planet. Inter. 101, 13 (1997).
60
Olson P., Glatzmaier G. A., Philos. Trans. R. Soc. London A 354, 1413 (1996).
61
Sumita I., Olson P., Science 286, 1547 (1999).
62
Glatzmaier G. A., Coe R., Hongre L., Roberts P. H., Nature 401, 885 (1999).
63
Bloxham J., Philos. Trans. R. Soc. London A 358, 1171 (2000).
64
___, Nature 405, 63 (2000).
65
Jeanloz R., Annu. Rev. Earth Planet. Sci. 18, 357 (1990);
; E. Knittle and R. Jeanloz, Science 251 1438 (1991).
66
Busse F. H., Wicht J., Geophys. Astrophys. Fluid Dyn. 64, 135 (1992).
67
Buffett B. A., Geophys. J. Int. 125, 303 (1996).
68
Holme R., Phys. Earth Planet. Inter. 117, 329 (2000).
69
Manga M., Jeanloz R., Geophys. Res. Lett. 23, 3091 (1996).
70
Jault D., LeMouel J. L., Geophys. Astrophys. Fluid Dyn. 48, 273 (1989);
Buffett B. A., Geophys. Res. Lett. 23, 2279 (1996).
71
Hide R., Science 157, 55 (1967).
72
Morelli A., Dziewonski A. M., Woodhouse J. H., Geophys. Res. Lett. 13, 1545 (1986).
73
A review of elastic anisotropy in the inner core is given by X. D. Song [Rev. Geophys. 35, 297 (1997)].
74
Tanaka S., Hamaguchi H., J. Geophys. Res. 102, 2925 (1997);
Creager K. C., J. Geophys. Res. 104, 23137 (1999);
Vidale J. E., Earle P. S., Nature 404, 273 (2000) .
75
McSweeney T. J., Creager K. C., Merrill R. T., Phys. Earth Planet. Inter. 101, 131 (1997);
Song X. D., Helmberger D. V., Science 282, 924 (1998).
76
Stixrude L., Cohen R. E., Science 267, 1972 (1995);
Steinle-Neumann G., Stixrude L., Cohen R. E., Phys. Rev. B 60, 791 (1999).
77
Singh S. C., Taylor M. A. J., Montagner J. P., Science 287, 2471 (2000).
78
Sumita I., Yoshida S., Kumazawa M., Hamano Y., Geophys. J. Int. 124, 502 (1996).
79
Jeanloz R., Wenk H. R., Geophys. Res. Lett. 15, 72 (1988);
Karato S., Science 262, 1708 (1993);
Yoshida S., Sumita I., Kumazawa M., J. Geophys. Res. 101, 28085 (1996);
Bergman M. I., Nature 389, 60 (1997);
Karato S., Nature 402, 871 (1999).
80
A summary of proposed explanations for elastic anistropy in the inner core is given by B. A. Buffett in Mineral Physics and Seismic Tomography, S. Karato et al., Eds. (American Geophysical Union, Washington, DC, 2000).
81
Song X. D., Richards P. G., Nature 382, 221 (1996);
Su W. J., Diewonski A. M., Jeanloz R., Science 274, 1883 (1996).
82
Su W. J., Dziewonski A. M, J. Geophys. Res. 100, 9831 (1995).
83
Creager K. C., Science 278, 1284 (1997).
84
Souriau A., Geophys. J. Int. 134, F1 (1998);
___, Poupinet G., Phys. Earth Planet. Inter. 118, 13 (2000).
85
Sharrock D. S., Woodhouse J. H., Earth Planets Space 50, 1013 (1998);
Laske G., Masters G., Nature 402, 66 (1999).
86
Buffett B. A., Geophys. Res. Lett. 23, 3803 (1996);
; Nature 388, 571 (1997).
87
Song X. D, J. Geophys. Res. 105, 623 (2000).
88
This review was written during a visit to the Berkeley Seismological Laboratory at the University of California. I thank B. Romanowicz and the staff of the Seismological Laboratory for their hospitality. J. Bloxham, G. Glatzmaier, and P. Olson kindly provided figures from their work. R. Jeanloz and S. Zatman offered many helpful suggestions on the manuscript. Supported by a Killiam Faculty Research Fellowship.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();