Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/49fd920892470049f56a44481759db5a.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Detection of human adaptation during the past 2000 years | Science
Skip to main content
Advertisement
Main content starts here

Identifying genes under recent selection

Evolutionary analyses aim to identify recent genetic changes that are likely to have been subject to selection. Field et al. present a method to identify such changes, the singleton density score, which they applied to over 3000 human genomes. Over the past ∼100 generations (2000 to 3000 years), Europeans are likely to have experienced selection for genetic variants, including those that affect skin and hair pigmentation, as well as height.
Science, this issue p. 760

Abstract

Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years. We see strong signals of selection at lactase and the major histocompatibility complex, and in favor of blond hair and blue eyes. For polygenic adaptation, we find that recent selection for increased height has driven allele frequency shifts across most of the genome. Moreover, we identify shifts associated with other complex traits, suggesting that polygenic adaptation has played a pervasive role in shaping genotypic and phenotypic variation in modern humans.
Understanding the genetic basis of adaptation is a central goal in evolutionary biology. Most work in humans and other species has focused on identifying signals of strong selection at individual loci (1). In humans, these methods have identified loci involved in adaptations to diet, altitude, and disease resistance, and lighter pigmentation in northern populations (24). Early methods for studying selection focused on detecting hard sweeps, in which new mutations under strong positive selection sweep through a population toward fixation (5). But selection often acts on preexisting variants, either in partial sweeps at individual loci (6, 7), or through polygenic adaptation acting simultaneously on many variants across the genome (8, 9).
However, it is difficult to measure recent selection on standing variation. In some cases this may be done by comparing closely related populations with divergent selective pressures (4, 10), or by using ancient DNA when suitable ancestral samples are available (11, 12), but a generally applicable method is lacking.
To tackle this challenge, we introduce the singleton density score (SDS). SDS uses whole-genome sequence data from contemporary samples to infer recent allele frequency changes at single-nucleotide polymorphisms (SNPs). Recent selection distorts the ancestral genealogy of sampled haplotypes, resulting in shorter terminal (tip) branches for the favored allele. Hence, haplotypes carrying the favored allele tend to carry fewer singleton mutations (Fig. 1, A to C, and fig. S1) (13). Following this intuition, we calculate the distance between the nearest singletons on either side of a test SNP as a summary statistic for each individual (Fig. 1D). The distributions of distances for the three genotypes at the test SNP are then used to compute a maximum likelihood estimate of the log-ratio of mean tip-branch lengths for the derived versus ancestral alleles (Fig. 1, E and F) (13). The two alleles act as natural controls for each other, correcting for local variation in mutation and recombination rates, or in the detection of singletons. The predictions are normalized within bins of derived allele frequency to have mean 0 and variance 1, where SDS > 0 corresponds to an increased frequency of the derived allele. In neutral simulations, SDS follows a standard normal distribution, even when considering complex scenarios with recent admixture (figs. S2 and S3).
Fig. 1 Illustration of the SDS method.
(A) Simulated frequency trajectory for a derived allele that was selected from standing variation starting 100 generations ago. (B) Corresponding genealogy of 3000 present-day genomes. Lineages carrying the derived allele (D) are in blue; ancestral (A) are in black. Enlargement of the genealogy illustrates that tip branches carrying the favored allele (blue) are on average shorter than those carrying the disfavored allele (black). (C) Because favored alleles (blue) tend to have shorter tip branches, their haplotypes tend to have lower singleton density. (D) For each individual, we compute the distance between nearest singletons around the test SNP. (E) Distribution of singleton distances as a function of genotype at the simulated test SNP. (F) Mean tip length t is estimated for each allele from a likelihood model. Unstandardized SDS is a log-ratio of estimated tip lengths; this is standardized to mean 0, variance 1 within bins of derived allele frequency. In this simulated example, SDS is highly significant (P = 1 × 10−17 in favor of the derived allele; relative to neutral simulations). Compare with illustration of drift simulation (fig. S1).
Because SDS measures changes in tip-branch lengths of the genealogy, it detects selection roughly within the timeframe of average tip lengths. For samples of 3000 individuals, this is ~75 generations, according to one recent demographic model (14) (Fig. 2A). At this sample size, SDS is powered to detect ~2% selection, with similar power for selection on standing variation and hard sweeps (Fig. 2, B and C, and fig. S4). Notably, SDS detects little or no signal for selection that stopped >100 generations before present (figs. S4 to S6). The time scale examined by SDS is roughly an order of magnitude shorter than the limits of sensitivity for previous methods that study hard sweeps (13). For example, the integrated haplotype score (iHS)—a commonly used test for hard sweeps (5)—integrates signal over >1000 generations, is generally less powerful, and has no specificity for recent selection (Fig. 2C and figs. S4 and S5).
Fig. 2 Properties of SDS.
(A) Mean tip length as a function of sample size, for a demographic model with strong recent growth (14) (additional models shown in fig. S10). (B) Power simulations for SDS (mean ± SD) under three models of selection with current derived allele frequency of 0.7: continuous hard sweep (orange); selection starting 100 generations ago (cyan); and hard sweep that stopped 100 generations ago (black). Right panel: corresponding simulations for iHS. (C) SDS and iHS, for sweeps that stopped in the past (s = 0.10), followed by neutral drift. (D) Power to detect simulated selection from present variation using half of the UK10K data. We biasedly sampled 1500 genomes out of 3195 without replacement so as to change the frequencies at randomly chosen SNPs. (E) Allele frequency differences between extant populations (1000-Genomes) versus SDS or iHS. SDS is most correlated with the difference between northern and southern Europe, whereas iHS reflects Europe versus Africa divergence. GBR, British; CEU, Utah residents (northwest European ancestry); IBS, Iberians (Spain); TSI, Tuscans (Italy); CHB, Han (China); JPT, Japanese; YRI, Yoruba (Nigeria); LWK, Luhya (Kenya).
To validate performance in real data, we analyzed 3195 individuals from the UK10K project (15) (fig. S7) (13). To model strong instantaneous selection, we performed biased subsampling of 1500 individuals (without replacement) to change allele frequencies at target SNPs by amounts ranging from 1% to 10% (Fig. 2D and figs. S8 and S9). Although iHS has no power in this test, each 1% change in allele frequency changes the mean SDS by ~0.3 to 0.4 standard deviations. Thus, we expect to have power to detect recent strong selection at individual loci, or weaker signals distributed across many alleles.
We used the set of 3195 genomes to compute SDS for 4.5 million autosomal SNPs with minor allele frequency >5%. We estimate the mean tip length to be 2000 to 3000 years [fig. S10; (13)]. Reassuringly, SDS predictions are correlated with allele-frequency differences between populations (Fig. 2E and fig. S11), and most strongly between southern and northern Europe (Spearman’s ρ = 0.32 ± 0.005). In contrast, iHS measured in a British sample is most correlated with African-European differences. This provides empirical evidence that SDS captures historical frequency changes for times more recent than iHS.
Genome-wide, the largest values of SDS cluster at the lactase locus, a well-known target of selection in Europeans (2, 12) (P = 1 × 10−23; Fig. 3, A and B, and figs. S12 and S13). Based on the magnitude of the signal, we infer that the selection almost certainly persisted into the last 2000 years (fig. S14) (13). The MHC (major histocompatibility complex) region, which has been subject to long-term balancing selection (16, 17), includes the second-highest cluster, with high SDS values across most of the extended MHC region, and at least three independent signals (maximum SDS = 7.9; P = 2 × 10−15; figs. S15 and S16) (13). Curiously, SDS does not support the strongest hit reported from a study of European ancient DNA (12), suggesting complex dynamics of selection in this region (fig. S13). SNPs in the neighborhood of WDFY4 also cross genome-wide significance (P = 3 × 10−11) (fig. S17), but the nature of selection is unclear (13).
Fig. 3 Overview of signals.
(A) Manhattan plot of SDS P values indicates regions of genome-wide significance (P < 5 × 10−8; P values are two-sided tail probabilities of standard normal). (B) Distributions of singleton distances at the lactase locus, partitioned by genotypes at the causal site. Compare to simulated signals (Fig. 1E). (C) SDS signals for a curated set of segregating variants with known effects on pigmentation shows overall increase in derived allele frequencies (one-sided P values). (D) Distribution of tSDS scores at 551 height-associated SNPs. tSDS is polarized so that tSDS > 0 implies increased frequency of the “tall” allele.
We next considered GWAS-associated variants from the genome-wide association study (GWAS) catalog (18). Overall, these have significantly inflated SDS variance (P = 5 × 10−7 excluding lactase and MHC) (fig. S18) (13). Examining categories of related variants, we found a strong enrichment for variants associated with pigmentation (Fig. 3C and figs. S19 to S21) (13). Although the major determinants of light skin pigmentation in Europe are near fixation and thus not testable by SDS, there is a strong overall enrichment of selection in favor of derived variants associated with lighter pigmentation, especially of hair and eye color (P = 3 × 10−9 for mean SDS > 0).
It has been proposed that another major mechanism of adaptation may be through polygenic selection on complex traits (8). Polygenic adaptation can potentially change phenotypes rapidly, through small, directed allele frequency shifts at many loci, yet leave only weak signals at individual loci. Currently, the best candidate for polygenic selection in humans is height, as northern Europeans have come to possess more “tall” alleles than southern Europeans over the past ~5000 years (9, 12, 19, 20).
We thus examined SDS for height-associated SNPs from a recent meta-analysis (21). To aid our analysis of height and other traits, we reset the sign of SDS scores for each trait such that positive values indicate increased frequency of the trait-increasing allele instead of the derived allele. We call these new metrics trait-SDS (tSDS) scores. The mean tSDS for 551 height-associated SNPs is significantly positive (mean = 0.30; P = 4 × 10−11), indicating that indeed, on average, “tall” alleles have been increasing in frequency within the past ~2000 to 3000 years in the ancestors of the British (Fig. 3D).
Because most complex-trait heritability is due to SNPs that do not reach GWAS significance (22), we hypothesized that we could increase power by including all SNPs, not just genome-wide significant hits. We thus used all SNPs to test for genome-wide rank correlation between tSDS and GWAS Z score [block-jackknife was used to account for linkage disequilibrium (LD)] (13). Notably, when testing height, mean tSDS is positive across nearly the entire range of P values, and the correlation is extremely significant (Spearman ρ = 0.078; P = 9 × 10−74; fig. S22A) (13). This is not an artifact of uncontrolled population structure in the GWAS, as the correlation is even stronger for a smaller family-based GWAS that provides stringent structure control (20) (Spearman ρ = 0.094; P = 9 × 10−163; Fig. 4A).
Fig. 4 Signals of polygenic adaptation.
(A) Mean tSDS of SNPs, where tSDS > 0 implies increased frequency of the “tall” allele in a recent family-based study (20). The x axis is ordered from least significant SNPs (P ~ 1) to most significant (P ~ 0), and SNPs are placed into bins of 1000 consecutive SNPs for easier visualization. (B) Covariance of height Z score and SDS, as a function of LD score, provides evidence that selection on height is truly polygenic (P = 2 × 10−11; LD score regression). (C) QQ-plot testing for a correlation between GWAS Z score and tSDS for 43 traits. tSDS > 0 implies increased frequency of the “trait-increasing” allele. Significant traits that are also nominally significant by LD score regression (P < 0.05, one-sided test) are labeled.
Our observation that the signal is stronger in the smaller family-based study may indicate that standard GWAS methods have overcorrected for population structure that pervasively correlates with the phenotypic signal. Further, it may seem counterintuitive that, in aggregate, even nonsignificant SNPs could have a detectable association with tSDS. However, we estimate that 85% of SNPs in this data set are associated with nonzero effects on height (including through LD tagging) and that the direction of effect is estimated correctly for 68% of all SNPs (23) (fig. S23) (13). Thus, our results indicate that polygenic selection on height has affected allele frequencies across most of the genome.
Aside from height and body mass index (BMI) (19), evidence for selection on other complex traits has generally been weak [e.g., (12, 19)]. We expanded our test to consider 43 traits for which genome-wide GWAS data are available (tables S1 and S2). Notably, many traits show highly significant associations between SDS and GWAS effect sizes (Fig. 4C). Because large-scale family studies are not available for most traits, we used LD score regression to verify these correlations (24, 25). This method uses the property that the covariance between two correlated polygenic signals should increase with the amount of LD if they share an underlying genetic basis, but should be nearly independent of LD for spurious associations resulting from stratification (13). Indeed for height, LD score regression is highly significant (P = 3 × 10−17, family data; P = 2 × 10−11, meta-analysis; Fig. 4B and fig. S22B). Notably, most of the other significant traits are also nominally significant by this stringent test and persist in multiple genomic contexts (Fig. 4C and figs. S24 to S27).
Although height has the strongest signal, we also see signals for increased infant head circumference and birth weight, and increases in female hip size; as well as on variants underlying metabolic traits; male-specific signal for decreased BMI; and in favor of later sexual maturation in women, but not in men. Multiple regression analysis indicates that none of the examined traits, including height, uniquely underlies the top associations (fig. S28) (13). Although these signals are highly intriguing, and some match known phenotypes of modern Britons (13), the confounding role—if any—of population structure in contributing to these signals remains to be fully determined.
In this study, we have introduced a method for inferring very recent changes in allele frequencies that is widely applicable across human populations and other species. We found that human adaptation continued well into historical times, with polygenic adaptation being an important force shaping both genotypic and phenotypic variation.

Acknowledgments

We thank G. Coop, R. Durbin, H. Fraser, N. Patterson, J. Pickrell, M. Przeworski, G. Sella, M. Robinson, P. Visscher, and the anonymous reviewers for comments; and A. Bhaskar for technical assistance. This work was supported by NIH grants ES025009, 5T32HG000044-19, and MH101825 and by the Howard Hughes Medical Institute. SDS scores and software are available through the Dryad Digital Repository at http://datadryad.org/resource/doi:10.5061/dryad.kd58f and GitHub at https://github.com/yairf/SDS, as well as through the authors’ website at http://pritchardlab.stanford.edu.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S28
Tables S1 and S2
References (2663)

Resources

File (field.sm.pdf)
File (table_s2.xlsx)

References and Notes

1
Vitti J. J., Grossman S. R., and Sabeti P. C., Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
2
Bersaglieri T., Sabeti P. C., Patterson N., Vanderploeg T., Schaffner S. F., Drake J. A., Rhodes M., Reich D. E., and Hirschhorn J. N., Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
3
Lamason R. L., Mohideen M. A., Mest J. R., Wong A. C., Norton H. L., Aros M. C., Jurynec M. J., Mao X., Humphreville V. R., Humbert J. E., Sinha S., Moore J. L., Jagadeeswaran P., Zhao W., Ning G., Makalowska I., McKeigue P. M., O’donnell D., Kittles R., Parra E. J., Mangini N. J., Grunwald D. J., Shriver M. D., Canfield V. A., and Cheng K. C., SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
4
Yi X., Liang Y., Huerta-Sanchez E., Jin X., Cuo Z. X. P., Pool J. E., Xu X., Jiang H., Vinckenbosch N., Korneliussen T. S., Zheng H., Liu T., He W., Li K., Luo R., Nie X., Wu H., Zhao M., Cao H., Zou J., Shan Y., Li S., Yang Q., Asan P., Ni P., Tian G., Xu J., Liu X., Jiang T., Wu R., Zhou G., Tang M., Qin J., Wang T., Feng S., Li G., Huasang J., Luosang J., Wang W., Chen F., Wang Y., Zheng X., Li Z., Bianba Z., Yang G., Wang X., Tang S., Gao G., Chen Y., Luo Z., Gusang L., Cao Z., Zhang Q., Ouyang W., Ren X., Liang H., Zheng H., Huang Y., Li J., Bolund L., Kristiansen K., Li Y., Zhang Y., Zhang X., Li R., Li S., Yang H., Nielsen R., Wang J., and Wang J., Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
5
Voight B. F., Kudaravalli S., Wen X., and Pritchard J. K., A map of recent positive selection in the human genome. PLOS Biol. 4, e72 (2006). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
6
Hermisson J. and Pennings P. S., Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
7
Przeworski M., Coop G., and Wall J. D., The signature of positive selection on standing genetic variation. Evolution 59, 2312–2323 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
8
Pritchard J. K., Pickrell J. K., and Coop G., The genetics of human adaptation: Hard sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20, R208–R215 (2010). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
9
Turchin M. C., Chiang C. W. K., Palmer C. D., Sankararaman S., Reich D., Hirschhorn J. N., and Genetic Investigation of ANthropometric Traits (GIANT) Consortium, Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44, 1015–1019 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
10
Bhatia G., Patterson N., Pasaniuc B., Zaitlen N., Genovese G., Pollack S., Mallick S., Myers S., Tandon A., Spencer C., Palmer C. D., Adeyemo A. A., Akylbekova E. L., Cupples L. A., Divers J., Fornage M., Kao W. H. L., Lange L., Li M., Musani S., Mychaleckyj J. C., Ogunniyi A., Papanicolaou G., Rotimi C. N., Rotter J. I., Ruczinski I., Salako B., Siscovick D. S., Tayo B. O., Yang Q., McCarroll S., Sabeti P., Lettre G., De Jager P., Hirschhorn J., Zhu X., Cooper R., Reich D., Wilson J. G., and Price A. L., Genome-wide comparison of African-ancestry populations from CARe and other cohorts reveals signals of natural selection. Am. J. Hum. Genet. 89, 368–381 (2011). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
11
Wilde S., Timpson A., Kirsanow K., Kaiser E., Kayser M., Unterländer M., Hollfelder N., Potekhina I. D., Schier W., Thomas M. G., and Burger J., Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. U.S.A. 111, 4832–4837 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
12
Mathieson I., Lazaridis I., Rohland N., Mallick S., Patterson N., Roodenberg S. A., Harney E., Stewardson K., Fernandes D., Novak M., Sirak K., Gamba C., Jones E. R., Llamas B., Dryomov S., Pickrell J., Arsuaga J. L., de Castro J. M. B., Carbonell E., Gerritsen F., Khokhlov A., Kuznetsov P., Lozano M., Meller H., Mochalov O., Moiseyev V., Guerra M. A. R., Roodenberg J., Vergès J. M., Krause J., Cooper A., Alt K. W., Brown D., Anthony D., Lalueza-Fox C., Haak W., Pinhasi R., and Reich D., Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
13
Information on materials and methods is available on Science Online.
14
Tennessen J. A., Bigham A. W., O’Connor T. D., Fu W., Kenny E. E., Gravel S., McGee S., Do R., Liu X., Jun G., Kang H. M., Jordan D., Leal S. M., Gabriel S., Rieder M. J., Abecasis G., Altshuler D., Nickerson D. A., Boerwinkle E., Sunyaev S., Bustamante C. D., Bamshad M. J., Akey J. M., Broad GO, Seattle GO, and NHLBI Exome Sequencing Project, Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
15
Walter K., Min J. L., Huang J., Crooks L., Memari Y., McCarthy S., Perry J. R. B., Xu C., Futema M., Lawson D., Iotchkova V., Schiffels S., Hendricks A. E., Danecek P., Li R., Floyd J., Wain L. V., Barroso I., Humphries S. E., Hurles M. E., Zeggini E., Barrett J. C., Plagnol V., Richards J. B., Greenwood C. M. T., Timpson N. J., Durbin R., Soranzo N., Bala S., Clapham P., Coates G., Cox T., Daly A., Danecek P., Du Y., Durbin R., Edkins S., Ellis P., Flicek P., Guo X., Guo X., Huang L., Jackson D. K., Joyce C., Keane T., Kolb-Kokocinski A., Langford C., Li Y., Liang J., Lin H., Liu R., Maslen J., McCarthy S., Muddyman D., Quail M. A., Stalker J., Sun J., Tian J., Wang G., Wang J., Wang Y., Wong K., Zhang P., Barroso I., Birney E., Boustred C., Chen L., Clement G., Cocca M., Danecek P., Davey Smith G., Day I. N. M., Day-Williams A., Down T., Dunham I., Durbin R., Evans D. M., Gaunt T. R., Geihs M., Greenwood C. M. T., Hart D., Hendricks A. E., Howie B., Huang J., Hubbard T., Hysi P., Iotchkova V., Jamshidi Y., Karczewski K. J., Kemp J. P., Lachance G., Lawson D., Lek M., Lopes M., MacArthur D. G., Marchini J., Mangino M., Mathieson I., McCarthy S., Memari Y., Metrustry S., Min J. L., Moayyeri A., Muddyman D., Northstone K., Panoutsopoulou K., Paternoster L., Perry J. R. B., Quaye L., Brent Richards J., Ring S., Ritchie G. R. S., Schiffels S., Shihab H. A., Shin S.-Y., Small K. S., Soler Artigas M., Soranzo N., Southam L., Spector T. D., St Pourcain B., Surdulescu G., Tachmazidou I., Timpson N. J., Tobin M. D., Valdes A. M., Visscher P. M., Wain L. V., Walter K., Ward K., Wilson S. G., Wong K., Yang J., Zeggini E., Zhang F., Zheng H.-F., Anney R., Ayub M., Barrett J. C., Blackwood D., Bolton P. F., Breen G., Collier D. A., Craddock N., Crooks L., Curran S., Curtis D., Durbin R., Gallagher L., Geschwind D., Gurling H., Holmans P., Lee I., Lönnqvist J., McCarthy S., McGuffin P., McIntosh A. M., McKechanie A. G., McQuillin A., Morris J., Muddyman D., O’Donovan M. C., Owen M. J., Palotie A., Parr J. R., Paunio T., Pietilainen O., Rehnström K., Sharp S. I., Skuse D., St Clair D., Suvisaari J., Walters J. T. R., Williams H. J., Barroso I., Bochukova E., Bounds R., Dominiczak A., Durbin R., Farooqi I. S., Hendricks A. E., Keogh J., Marenne G., McCarthy S., Morris A., Muddyman D., O’Rahilly S., Porteous D. J., Smith B. H., Tachmazidou I., Wheeler E., Zeggini E., Al Turki S., Anderson C. A., Antony D., Barroso I., Beales P., Bentham J., Bhattacharya S., Calissano M., Carss K., Chatterjee K., Cirak S., Cosgrove C., Durbin R., Fitzpatrick D. R., Floyd J., Reghan Foley A., Franklin C. S., Futema M., Grozeva D., Humphries S. E., Hurles M. E., McCarthy S., Mitchison H. M., Muddyman D., Muntoni F., O’Rahilly S., Onoufriadis A., Parker V., Payne F., Plagnol V., Lucy Raymond F., Roberts N., Savage D. B., Scambler P., Schmidts M., Schoenmakers N., Semple R. K., Serra E., Spasic-Boskovic O., Stevens E., van Kogelenberg M., Vijayarangakannan P., Walter K., Williamson K. A., Wilson C., Whyte T., Ciampi A., Greenwood C. M. T., Hendricks A. E., Li R., Metrustry S., Oualkacha K., Tachmazidou I., Xu C. J., Zeggini E., Bobrow M., Bolton P. F., Durbin R., Fitzpatrick D. R., Griffin H., Hurles M. E., Kaye J., Kennedy K., Kent A., Muddyman D., Muntoni F., Lucy Raymond F., Semple R. K., Smee C., Spector T. D., Timpson N. J., Charlton R., Ekong R., Futema M., Humphries S. E., Khawaja F., Lopes L. R., Migone N., Payne S. J., Plagnol V., Pollitt R. C., Povey S., Ridout C. K., Robinson R. L., Scott R. H., Shaw A., Syrris P., Taylor R., Vandersteen A. M., Barrett J. C., Barroso I., Davey Smith G., Durbin R., Farooqi I. S., Fitzpatrick D. R., Hurles M. E., Kaye J., Kennedy K., Langford C., McCarthy S., Muddyman D., Owen M. J., Palotie A., Brent Richards J., Soranzo N., Spector T. D., Stalker J., Timpson N. J., Zeggini E., Amuzu A., Pablo Casas J., Chambers J. C., Cocca M., Dedoussis G., Gambaro G., Gasparini P., Gaunt T. R., Huang J., Iotchkova V., Isaacs A., Johnson J., Kleber M. E., Kooner J. S., Langenberg C., Luan J., Malerba G., März W., Matchan A., Min J. L., Morris R., Nordestgaard B. G., Benn M., Ring S., Scott R. A., Soranzo N., Southam L., Timpson N. J., Toniolo D., Traglia M., Tybjaerg-Hansen A., van Duijn C. M., van Leeuwen E. M., Varbo A., Whincup P., Zaza G., Zeggini E., Zhang W., and UK10K Consortium, The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
16
de Bakker P. I. W. and Raychaudhuri S., Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet. 21 (R1), R29–R36 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
17
Leffler E. M., Gao Z., Pfeifer S., Ségurel L., Auton A., Venn O., Bowden R., Bontrop R., Wall J. D., Sella G., Donnelly P., McVean G., and Przeworski M., Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
18
Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., and Parkinson H., The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
19
Berg J. J. and Coop G., A population genetic signal of polygenic adaptation. PLOS Genet. 10, e1004412 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
20
Robinson M. R., Hemani G., Medina-Gomez C., Mezzavilla M., Esko T., Shakhbazov K., Powell J. E., Vinkhuyzen A., Berndt S. I., Gustafsson S., Justice A. E., Kahali B., Locke A. E., Pers T. H., Vedantam S., Wood A. R., van Rheenen W., Andreassen O. A., Gasparini P., Metspalu A., Berg L. H., Veldink J. H., Rivadeneira F., Werge T. M., Abecasis G. R., Boomsma D. I., Chasman D. I., de Geus E. J. C., Frayling T. M., Hirschhorn J. N., Hottenga J. J., Ingelsson E., Loos R. J. F., Magnusson P. K. E., Martin N. G., Montgomery G. W., North K. E., Pedersen N. L., Spector T. D., Speliotes E. K., Goddard M. E., Yang J., and Visscher P. M., Population genetic differentiation of height and body mass index across Europe. Nat. Genet. 47, 1357–1362 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
21
Wood A. R., Esko T., Yang J., Vedantam S., Pers T. H., Gustafsson S., Chu A. Y., Estrada K., Luan J., Kutalik Z., Amin N., Buchkovich M. L., Croteau-Chonka D. C., Day F. R., Duan Y., Fall T., Fehrmann R., Ferreira T., Jackson A. U., Karjalainen J., Lo K. S., Locke A. E., Mägi R., Mihailov E., Porcu E., Randall J. C., Scherag A., Vinkhuyzen A. A. E., Westra H.-J., Winkler T. W., Workalemahu T., Zhao J. H., Absher D., Albrecht E., Anderson D., Baron J., Beekman M., Demirkan A., Ehret G. B., Feenstra B., Feitosa M. F., Fischer K., Fraser R. M., Goel A., Gong J., Justice A. E., Kanoni S., Kleber M. E., Kristiansson K., Lim U., Lotay V., Lui J. C., Mangino M., Mateo Leach I., Medina-Gomez C., Nalls M. A., Nyholt D. R., Palmer C. D., Pasko D., Pechlivanis S., Prokopenko I., Ried J. S., Ripke S., Shungin D., Stancáková A., Strawbridge R. J., Sung Y. J., Tanaka T., Teumer A., Trompet S., van der Laan S. W., van Setten J., Van Vliet-Ostaptchouk J. V., Wang Z., Yengo L., Zhang W., Afzal U., Arnlöv J., Arscott G. M., Bandinelli S., Barrett A., Bellis C., Bennett A. J., Berne C., Blüher M., Bolton J. L., Böttcher Y., Boyd H. A., Bruinenberg M., Buckley B. M., Buyske S., Caspersen I. H., Chines P. S., Clarke R., Claudi-Boehm S., Cooper M., Daw E. W., De Jong P. A., Deelen J., Delgado G., Denny J. C., Dhonukshe-Rutten R., Dimitriou M., Doney A. S. F., Dörr M., Eklund N., Eury E., Folkersen L., Garcia M. E., Geller F., Giedraitis V., Go A. S., Grallert H., Grammer T. B., Gräßler J., Grönberg H., de Groot L. C. P. G. M., Groves C. J., Haessler J., Hall P., Haller T., Hallmans G., Hannemann A., Hartman C. A., Hassinen M., Hayward C., Heard-Costa N. L., Helmer Q., Hemani G., Henders A. K., Hillege H. L., Hlatky M. A., Hoffmann W., Hoffmann P., Holmen O., Houwing-Duistermaat J. J., Illig T., Isaacs A., James A. L., Jeff J., Johansen B., Johansson Å., Jolley J., Juliusdottir T., Junttila J., Kho A. N., Kinnunen L., Klopp N., Kocher T., Kratzer W., Lichtner P., Lind L., Lindström J., Lobbens S., Lorentzon M., Lu Y., Lyssenko V., Magnusson P. K. E., Mahajan A., Maillard M., McArdle W. L., McKenzie C. A., McLachlan S., McLaren P. J., Menni C., Merger S., Milani L., Moayyeri A., Monda K. L., Morken M. A., Müller G., Müller-Nurasyid M., Musk A. W., Narisu N., Nauck M., Nolte I. M., Nöthen M. M., Oozageer L., Pilz S., Rayner N. W., Renstrom F., Robertson N. R., Rose L. M., Roussel R., Sanna S., Scharnagl H., Scholtens S., Schumacher F. R., Schunkert H., Scott R. A., Sehmi J., Seufferlein T., Shi J., Silventoinen K., Smit J. H., Smith A. V., Smolonska J., Stanton A. V., Stirrups K., Stott D. J., Stringham H. M., Sundström J., Swertz M. A., Syvänen A.-C., Tayo B. O., Thorleifsson G., Tyrer J. P., van Dijk S., van Schoor N. M., van der Velde N., van Heemst D., van Oort F. V. A., Vermeulen S. H., Verweij N., Vonk J. M., Waite L. L., Waldenberger M., Wennauer R., Wilkens L. R., Willenborg C., Wilsgaard T., Wojczynski M. K., Wong A., Wright A. F., Zhang Q., Arveiler D., Bakker S. J. L., Beilby J., Bergman R. N., Bergmann S., Biffar R., Blangero J., Boomsma D. I., Bornstein S. R., Bovet P., Brambilla P., Brown M. J., Campbell H., Caulfield M. J., Chakravarti A., Collins R., Collins F. S., Crawford D. C., Cupples L. A., Danesh J., de Faire U., den Ruijter H. M., Erbel R., Erdmann J., Eriksson J. G., Farrall M., Ferrannini E., Ferrières J., Ford I., Forouhi N. G., Forrester T., Gansevoort R. T., Gejman P. V., Gieger C., Golay A., Gottesman O., Gudnason V., Gyllensten U., Haas D. W., Hall A. S., Harris T. B., Hattersley A. T., Heath A. C., Hengstenberg C., Hicks A. A., Hindorff L. A., Hingorani A. D., Hofman A., Hovingh G. K., Humphries S. E., Hunt S. C., Hypponen E., Jacobs K. B., Jarvelin M.-R., Jousilahti P., Jula A. M., Kaprio J., Kastelein J. J. P., Kayser M., Kee F., Keinanen-Kiukaanniemi S. M., Kiemeney L. A., Kooner J. S., Kooperberg C., Koskinen S., Kovacs P., Kraja A. T., Kumari M., Kuusisto J., Lakka T. A., Langenberg C., Le Marchand L., Lehtimäki T., Lupoli S., Madden P. A. F., Männistö S., Manunta P., Marette A., Matise T. C., McKnight B., Meitinger T., Moll F. L., Montgomery G. W., Morris A. D., Morris A. P., Murray J. C., Nelis M., Ohlsson C., Oldehinkel A. J., Ong K. K., Ouwehand W. H., Pasterkamp G., Peters A., Pramstaller P. P., Price J. F., Qi L., Raitakari O. T., Rankinen T., Rao D. C., Rice T. K., Ritchie M., Rudan I., Salomaa V., Samani N. J., Saramies J., Sarzynski M. A., Schwarz P. E. H., Sebert S., Sever P., Shuldiner A. R., Sinisalo J., Steinthorsdottir V., Stolk R. P., Tardif J.-C., Tönjes A., Tremblay A., Tremoli E., Virtamo J., Vohl M.-C., Amouyel P., Asselbergs F. W., Assimes T. L., Bochud M., Boehm B. O., Boerwinkle E., Bottinger E. P., Bouchard C., Cauchi S., Chambers J. C., Chanock S. J., Cooper R. S., de Bakker P. I. W., Dedoussis G., Ferrucci L., Franks P. W., Froguel P., Groop L. C., Haiman C. A., Hamsten A., Hayes M. G., Hui J., Hunter D. J., Hveem K., Jukema J. W., Kaplan R. C., Kivimaki M., Kuh D., Laakso M., Liu Y., Martin N. G., März W., Melbye M., Moebus S., Munroe P. B., Njølstad I., Oostra B. A., Palmer C. N. A., Pedersen N. L., Perola M., Pérusse L., Peters U., Powell J. E., Power C., Quertermous T., Rauramaa R., Reinmaa E., Ridker P. M., Rivadeneira F., Rotter J. I., Saaristo T. E., Saleheen D., Schlessinger D., Slagboom P. E., Snieder H., Spector T. D., Strauch K., Stumvoll M., Tuomilehto J., Uusitupa M., van der Harst P., Völzke H., Walker M., Wareham N. J., Watkins H., Wichmann H.-E., Wilson J. F., Zanen P., Deloukas P., Heid I. M., Lindgren C. M., Mohlke K. L., Speliotes E. K., Thorsteinsdottir U., Barroso I., Fox C. S., North K. E., Strachan D. P., Beckmann J. S., Berndt S. I., Boehnke M., Borecki I. B., McCarthy M. I., Metspalu A., Stefansson K., Uitterlinden A. G., van Duijn C. M., Franke L., Willer C. J., Price A. L., Lettre G., Loos R. J. F., Weedon M. N., Ingelsson E., O’Connell J. R., Abecasis G. R., Chasman D. I., Goddard M. E., Visscher P. M., Hirschhorn J. N., Frayling T. M., Electronic Medical Records and Genomics (eMEMERGEGE) Consortium, MIGen Consortium, PAGEGE Consortium, and LifeLines Cohort Study, Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
22
Yang J., Benyamin B., McEvoy B. P., Gordon S., Henders A. K., Nyholt D. R., Madden P. A., Heath A. C., Martin N. G., Montgomery G. W., Goddard M. E., and Visscher P. M., Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
23
Stephens M., False Discovery Rates: A New Deal. bioRxiv (2016).
24
Bulik-Sullivan B. K., Loh P.-R., Finucane H. K., Ripke S., Yang J., Patterson N., Daly M. J., Price A. L., Neale B. M., and Schizophrenia Working Group of the Psychiatric Genomics Consortium, LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
25
Bulik-Sullivan B., Finucane H. K., Anttila V., Gusev A., Day F. R., Loh P.-R., Duncan L., Perry J. R. B., Patterson N., Robinson E. B., Daly M. J., Price A. L., Neale B. M., ReproGen Consortium, Psychiatric Genomics Consortium, and Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3, An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
26
J. Wakeley, Coalescent Theory: An Introduction (Freeman, 2008); https://books.google.com/books?id=x30RAgAACAAJ).
27
Sabeti P. C., Reich D. E., Higgins J. M., Levine H. Z. P., Richter D. J., Schaffner S. F., Gabriel S. B., Platko J. V., Patterson N. J., McDonald G. J., Ackerman H. C., Campbell S. J., Altshuler D., Cooper R., Kwiatkowski D., Ward R., and Lander E. S., Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
28
Mathieson I. and McVean G., Demography and the age of rare variants. PLOS Genet. 10, e1004528 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
29
Harris K., Evidence for recent, population-specific evolution of the human mutation rate. Proc. Natl. Acad. Sci. U.S.A. 112, 3439–3444 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
30
Hudson R. R., Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
31
Peng B. and Kimmel M., simuPOP: A forward-time population genetics simulation environment. Bioinformatics 21, 3686–3687 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
32
Teshima K. M. and Innan H., mbs: Modifying Hudson’s ms software to generate samples of DNA sequences with a biallelic site under selection. BMC Bioinformatics 10, 166 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
33
Kelleher J., Etheridge A. M., and McVean G., Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes. PLOS Comput. Biol. 12, e1004842 (2016). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
34
Ewing G. and Hermisson J., MSMS: A coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics 26, 2064–2065 (2010). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
35
Abecasis G. R., Auton A., Brooks L. D., DePristo M. A., Durbin R. M., Handsaker R. E., Kang H. M., Marth G. T., McVean G. A., and 1000 Genomes Project Consortium, An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
36
Szpiech Z. A. and Hernandez R. D., selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
37
Auton A., Brooks L. D., Durbin R. M., Garrison E. P., Kang H. M., Korbel J. O., Marchini J. L., McCarthy S., McVean G. A., Abecasis G. R., and 1000 Genomes Project Consortium, A global reference for human genetic variation. Nature 526, 68–74 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
38
Nelson M. R., Wegmann D., Ehm M. G., Kessner D., St Jean P., Verzilli C., Shen J., Tang Z., Bacanu S. A., Fraser D., Warren L., Aponte J., Zawistowski M., Liu X., Zhang H., Zhang Y., Li J., Li Y., Li L., Woollard P., Topp S., Hall M. D., Nangle K., Wang J., Abecasis G., Cardon L. R., Zöllner S., Whittaker J. C., Chissoe S. L., Novembre J., and Mooser V., An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
39
Gazave E., Ma L., Chang D., Coventry A., Gao F., Muzny D., Boerwinkle E., Gibbs R. A., Sing C. F., Clark A. G., and Keinan A., Neutral genomic regions refine models of recent rapid human population growth. Proc. Natl. Acad. Sci. U.S.A. 111, 757–762 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
40
P. Moorjani, Z. Gao, M. Przeworski, Human germline mutation and the erratic evolutionary clock. bioRxiv (2016); http://biorxiv.org/content/early/2016/08/05/058024.
41
V. M. Narasimhan et al., A direct multi-generational estimate of the human mutation rate from autozygous segments seen in thousands of parentally related individuals. bioRxiv (2016); http://biorxiv.org/content/early/2016/06/17/059436.
42
Itan Y., Powell A., Beaumont M. A., Burger J., and Thomas M. G., The origins of lactase persistence in Europe. PLOS Comput. Biol. 5, e1000491 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
43
Gerbault P., Liebert A., Itan Y., Powell A., Currat M., Burger J., Swallow D. M., and Thomas M. G., Evolution of lactase persistence: An example of human niche construction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 863–877 (2011). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
44
Gerbault P., Moret C., Currat M., and Sanchez-Mazas A., Impact of selection and demography on the diffusion of lactase persistence. PLOS ONE 4, e6369 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
45
Sverrisdóttir O. Ó., Timpson A., Toombs J., Lecoeur C., Froguel P., Carretero J. M., Arsuaga Ferreras J. L., Götherström A., and Thomas M. G., Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Mol. Biol. Evol. 31, 975–983 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
46
Sulem P., Gudbjartsson D. F., Stacey S. N., Helgason A., Rafnar T., Magnusson K. P., Manolescu A., Karason A., Palsson A., Thorleifsson G., Jakobsdottir M., Steinberg S., Pálsson S., Jonasson F., Sigurgeirsson B., Thorisdottir K., Ragnarsson R., Benediktsdottir K. R., Aben K. K., Kiemeney L. A., Olafsson J. H., Gulcher J., Kong A., Thorsteinsdottir U., and Stefansson K., Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39, 1443–1452 (2007). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
47
and Analysis Consortium T. C. S. and Chimpanzee Sequencing and Analysis Consortium, Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
48
Lao O., de Gruijter J. M., van Duijn K., Navarro A., and Kayser M., Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
49
Williamson S. H., Hubisz M. J., Clark A. G., Payseur B. A., Bustamante C. D., and Nielsen R., Localizing recent adaptive evolution in the human genome. PLOS Genet. 3, e90 (2007). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
50
Coop G., Pickrell J. K., Novembre J., Kudaravalli S., Li J., Absher D., Myers R. M., Cavalli-Sforza L. L., Feldman M. W., and Pritchard J. K., The role of geography in human adaptation. PLOS Genet. 5, e1000500 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
51
Miller C. T., Beleza S., Pollen A. A., Schluter D., Kittles R. A., Shriver M. D., and Kingsley D. M., cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
52
Beleza S., Santos A. M., McEvoy B., Alves I., Martinho C., Cameron E., Shriver M. D., Parra E. J., and Rocha J., The timing of pigmentation lightening in Europeans. Mol. Biol. Evol. 30, 24–35 (2013). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
53
Kunsch H. R., The Jackknife and the Bootstrap for General Stationary Observations. Ann. Stat. 17, 1217–1241 (1989).
54
Busing F. M. T. A., Meijer E., and van der Leeden R., Delete- m Jackknife for Unequal m. Stat. Comput. 9, 3–8 (1999).
55
McVicker G., Gordon D., Davis C., and Green P., Widespread genomic signatures of natural selection in hominid evolution. PLOS Genet. 5, e1000471 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
56
Cousminer D. L., Stergiakouli E., Berry D. J., Ang W., Groen-Blokhuis M. M., Körner A., Siitonen N., Ntalla I., Marinelli M., Perry J. R. B., Kettunen J., Jansen R., Surakka I., Timpson N. J., Ring S., Mcmahon G., Power C., Wang C., Kähönen M., Viikari J., Lehtimäki T., Middeldorp C. M., Hulshoff Pol H. E., Neef M., Weise S., Pahkala K., Niinikoski H., Zeggini E., Panoutsopoulou K., Bustamante M., Penninx B. W. J. H., Murabito J., Torrent M., Dedoussis G. V., Kiess W., Boomsma D. I., Pennell C. E., Raitakari O. T., Hyppönen E., Davey Smith G., Ripatti S., McCarthy M. I., Widén E., ReproGen Consortium, and Early Growth Genetics Consortium, Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Hum. Mol. Genet. 23, 4452–4464 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
57
Perry J. R. B., Stolk L., Franceschini N., Lunetta K. L., Zhai G., McArdle P. F., Smith A. V., Aspelund T., Bandinelli S., Boerwinkle E., Cherkas L., Eiriksdottir G., Estrada K., Ferrucci L., Folsom A. R., Garcia M., Gudnason V., Hofman A., Karasik D., Kiel D. P., Launer L. J., van Meurs J., Nalls M. A., Rivadeneira F., Shuldiner A. R., Singleton A., Soranzo N., Tanaka T., Visser J. A., Weedon M. N., Wilson S. G., Zhuang V., Streeten E. A., Harris T. B., Murray A., Spector T. D., Demerath E. W., Uitterlinden A. G., and Murabito J. M., Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650 (2009). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
58
Parent A.-S., Teilmann G., Juul A., Skakkebaek N. E., Toppari J., and Bourguignon J.-P., The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
59
Karapanou O. and Papadimitriou A., Determinants of menarche. Reprod. Biol. Endocrinol. 8, 115 (2010). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
60
Natale V. and Rajagopalan A., Worldwide variation in human growth and the World Health Organization growth standards: A systematic review. BMJ Open 4, e003735–e003735 (2014). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
61
Bhaskar A., Wang Y. X. R., and Song Y. S., Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. Genome Res. 25, 268–279 (2015). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
62
Maher M. C., Uricchio L. H., Torgerson D. G., and Hernandez R. D., Population genetics of rare variants and complex diseases. Hum. Hered. 74, 118–128 (2012). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract
63
Charlesworth B., Morgan M. T., and Charlesworth D., The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993). http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=000000&dopt=Abstract

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();