Notice: file_put_contents(): Write of 449498 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Upper mantle structure of Mars from InSight seismic data | Science
Skip to main content
Advertisement
Main content starts here
No access
Report

Upper mantle structure of Mars from InSight seismic data

Amir Khan https://orcid.org/0000-0002-7787-4836, Savas Ceylan https://orcid.org/0000-0002-6552-6850, Martin van Driel https://orcid.org/0000-0002-8938-4615, Domenico Giardini https://orcid.org/0000-0002-5573-7638, Philippe Lognonné https://orcid.org/0000-0002-1014-920X, Henri Samuel, Nicholas C. Schmerr https://orcid.org/0000-0002-3256-1262, Simon C. Stähler https://orcid.org/0000-0002-0783-2489, Andrea C. Duran https://orcid.org/0000-0003-4269-930X, Quancheng Huang https://orcid.org/0000-0002-5681-5159, Doyeon Kim https://orcid.org/0000-0003-4594-2336, Adrien Broquet https://orcid.org/0000-0002-5153-303X, Constantinos Charalambous https://orcid.org/0000-0002-9139-3895, John F. Clinton https://orcid.org/0000-0001-8626-2703, Paul M. Davis https://orcid.org/0000-0001-9888-4729, Mélanie Drilleau https://orcid.org/0000-0001-5625-9706, Foivos Karakostas https://orcid.org/0000-0001-5751-5900, Vedran Lekic https://orcid.org/0000-0002-3548-272X, Scott M. McLennan https://orcid.org/0000-0003-4259-7178, Ross R. Maguire https://orcid.org/0000-0002-0822-8849, Chloé Michaut https://orcid.org/0000-0002-2578-0117, Mark P. Panning https://orcid.org/0000-0002-2041-3190, William T. Pike https://orcid.org/0000-0002-7660-6231, Baptiste Pinot https://orcid.org/0000-0003-2180-8650, Matthieu Plasman https://orcid.org/0000-0002-5630-2089, John-Robert Scholz https://orcid.org/0000-0003-1404-2335, Rudolf Widmer-Schnidrig https://orcid.org/0000-0001-9698-2739, Tilman Spohn https://orcid.org/0000-0002-9322-6660, Suzanne E. Smrekar https://orcid.org/0000-0001-8775-075X, and William B. Banerdt https://orcid.org/0000-0003-3125-1542Authors Info & Affiliations
Science
23 Jul 2021
Vol 373, Issue 6553
pp. 434-438

Single seismometer structure

Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al., Knapmeyer-Endrun et al., and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet.
Science, abf2966, abf8966, abi7730, this issue p. 434, p. 438, p. 443 see also abj8914, p. 388

Abstract

For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S18
Tables S1 to S9
References (5891)

Resources

File (abf2966_khan_sm.pdf)
File (science.abf2966_sm.pdf)

References and Notes

1
W. B. Banerdt, S. E. Smrekar, D. Banfield, D. Giardini, M. Golombek, C. L. Johnson, P. Lognonné, A. Spiga, T. Spohn, C. Perrin, S. C. Stähler, D. Antonangeli, S. Asmar, C. Beghein, N. Bowles, E. Bozdag, P. Chi, U. Christensen, J. Clinton, G. S. Collins, I. Daubar, V. Dehant, M. Drilleau, M. Fillingim, W. Folkner, R. F. Garcia, J. Garvin, J. Grant, M. Grott, J. Grygorczuk, T. Hudson, J. C. E. Irving, G. Kargl, T. Kawamura, S. Kedar, S. King, B. Knapmeyer-Endrun, M. Knapmeyer, M. Lemmon, R. Lorenz, J. N. Maki, L. Margerin, S. M. McLennan, C. Michaut, D. Mimoun, A. Mittelholz, A. Mocquet, P. Morgan, N. T. Mueller, N. Murdoch, S. Nagihara, C. Newman, F. Nimmo, M. Panning, W. T. Pike, A.-C. Plesa, S. Rodriguez, J. A. Rodriguez-Manfredi, C. T. Russell, N. Schmerr, M. Siegler, S. Stanley, E. Stutzmann, N. Teanby, J. Tromp, M. van Driel, N. Warner, R. Weber, M. Wieczorek, Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).
2
M. Golombek, N. H. Warner, J. A. Grant, E. Hauber, V. Ansan, C. M. Weitz, N. Williams, C. Charalambous, S. A. Wilson, A. DeMott, M. Kopp, H. Lethcoe-Wilson, L. Berger, R. Hausmann, E. Marteau, C. Vrettos, A. Trussell, W. Folkner, S. Le Maistre, N. Mueller, M. Grott, T. Spohn, S. Piqueux, E. Millour, F. Forget, I. Daubar, N. Murdoch, P. Lognonné, C. Perrin, S. Rodriguez, W. T. Pike, T. Parker, J. Maki, H. Abarca, R. Deen, J. Hall, P. Andres, N. Ruoff, F. Calef, S. Smrekar, M. M. Baker, M. Banks, A. Spiga, D. Banfield, J. Garvin, C. E. Newman, W. B. Banerdt, Geology of the InSight landing site on Mars. Nat. Commun. 11, 1014 (2020).
3
P. Lognonné, W. B. Banerdt, D. Giardini, W. T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, K. J. Hurst, F. Ijpelaan, J. W. Umland, R. Llorca-Cejudo, S. A. Larson, R. F. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M. P. Panning, R. C. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, L. J. Facto, V. Gharakanian, J. E. Feldman, T. L. Hoffman, D. B. Klein, K. Klein, N. P. Onufer, J. Paredes-Garcia, M. P. Petkov, J. R. Willis, S. E. Smrekar, M. Drilleau, T. Gabsi, T. Nebut, O. Robert, S. Tillier, C. Moreau, M. Parise, G. Aveni, S. Ben Charef, Y. Bennour, T. Camus, P. A. Dandonneau, C. Desfoux, B. Lecomte, O. Pot, P. Revuz, D. Mance, J. tenPierick, N. E. Bowles, C. Charalambous, A. K. Delahunty, J. Hurley, R. Irshad, H. Liu, A. G. Mukherjee, I. M. Standley, A. E. Stott, J. Temple, T. Warren, M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, C. Aicardi, M. André, J. Baroukh, A. Borrien, A. Bouisset, P. Boutte, K. Brethomé, C. Brysbaert, T. Carlier, M. Deleuze, J. M. Desmarres, D. Dilhan, C. Doucet, D. Faye, N. Faye-Refalo, R. Gonzalez, C. Imbert, C. Larigauderie, E. Locatelli, L. Luno, J.-R. Meyer, F. Mialhe, J. M. Mouret, M. Nonon, Y. Pahn, A. Paillet, P. Pasquier, G. Perez, R. Perez, L. Perrin, B. Pouilloux, A. Rosak, I. Savin de Larclause, J. Sicre, M. Sodki, N. Toulemont, B. Vella, C. Yana, F. Alibay, O. M. Avalos, M. A. Balzer, P. Bhandari, E. Blanco, B. D. Bone, J. C. Bousman, P. Bruneau, F. J. Calef, R. J. Calvet, S. A. D’Agostino, G. de Los Santos, R. G. Deen, R. W. Denise, J. Ervin, N. W. Ferraro, H. E. Gengl, F. Grinblat, D. Hernandez, M. Hetzel, M. E. Johnson, L. Khachikyan, J. Y. Lin, S. M. Madzunkov, S. L. Marshall, I. G. Mikellides, E. A. Miller, W. Raff, J. E. Singer, C. M. Sunday, J. F. Villalvazo, M. C. Wallace, D. Banfield, J. A. Rodriguez-Manfredi, C. T. Russell, A. Trebi-Ollennu, J. N. Maki, E. Beucler, M. Böse, C. Bonjour, J. L. Berenguer, S. Ceylan, J. Clinton, V. Conejero, I. Daubar, V. Dehant, P. Delage, F. Euchner, I. Estève, L. Fayon, L. Ferraioli, C. L. Johnson, J. Gagnepain-Beyneix, M. Golombek, A. Khan, T. Kawamura, B. Kenda, P. Labrot, N. Murdoch, C. Pardo, C. Perrin, L. Pou, A. Sauron, D. Savoie, S. Stähler, E. Stutzmann, N. A. Teanby, J. Tromp, M. van Driel, M. Wieczorek, R. Widmer-Schnidrig, J. Wookey, SEIS: Insight’s Seismic Experiment for Internal Structure of Mars. Space Sci. Rev. 215, 12 (2019).
4
P. Lognonné, W. B. Banerdt, W. T. Pike, D. Giardini, U. Christensen, R. F. Garcia, T. Kawamura, S. Kedar, B. Knapmeyer-Endrun, L. Margerin, F. Nimmo, M. Panning, B. Tauzin, J.-R. Scholz, D. Antonangeli, S. Barkaoui, E. Beucler, F. Bissig, N. Brinkman, M. Calvet, S. Ceylan, C. Charalambous, P. Davis, M. van Driel, M. Drilleau, L. Fayon, R. Joshi, B. Kenda, A. Khan, M. Knapmeyer, V. Lekic, J. McClean, D. Mimoun, N. Murdoch, L. Pan, C. Perrin, B. Pinot, L. Pou, S. Menina, S. Rodriguez, C. Schmelzbach, N. Schmerr, D. Sollberger, A. Spiga, S. Stähler, A. Stott, E. Stutzmann, S. Tharimena, R. Widmer-Schnidrig, F. Andersson, V. Ansan, C. Beghein, M. Böse, E. Bozdag, J. Clinton, I. Daubar, P. Delage, N. Fuji, M. Golombek, M. Grott, A. Horleston, K. Hurst, J. Irving, A. Jacob, J. Knollenberg, S. Krasner, C. Krause, R. Lorenz, C. Michaut, R. Myhill, T. Nissen-Meyer, J. ten Pierick, A.-C. Plesa, C. Quantin-Nataf, J. Robertsson, L. Rochas, M. Schimmel, S. Smrekar, T. Spohn, N. Teanby, J. Tromp, J. Vallade, N. Verdier, C. Vrettos, R. Weber, D. Banfield, E. Barrett, M. Bierwirth, S. Calcutt, N. Compaire, C. L. Johnson, D. Mance, F. Euchner, L. Kerjean, G. Mainsant, A. Mocquet, J. A. Rodriguez Manfredi, G. Pont, P. Laudet, T. Nebut, S. de Raucourt, O. Robert, C. T. Russell, A. Sylvestre-Baron, S. Tillier, T. Warren, M. Wieczorek, C. Yana, P. Zweifel, Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nat. Geosci. 13, 213–220 (2020).
5
D. Giardini, P. Lognonné, W. B. Banerdt, W. T. Pike, U. Christensen, S. Ceylan, J. F. Clinton, M. van Driel, S. C. Stähler, M. Böse, R. F. Garcia, A. Khan, M. Panning, C. Perrin, D. Banfield, E. Beucler, C. Charalambous, F. Euchner, A. Horleston, A. Jacob, T. Kawamura, S. Kedar, G. Mainsant, J.-R. Scholz, S. E. Smrekar, A. Spiga, C. Agard, D. Antonangeli, S. Barkaoui, E. Barrett, P. Combes, V. Conejero, I. Daubar, M. Drilleau, C. Ferrier, T. Gabsi, T. Gudkova, K. Hurst, F. Karakostas, S. King, M. Knapmeyer, B. Knapmeyer-Endrun, R. Llorca-Cejudo, A. Lucas, L. Luno, L. Margerin, J. B. McClean, D. Mimoun, N. Murdoch, F. Nimmo, M. Nonon, C. Pardo, A. Rivoldini, J. A. R. Manfredi, H. Samuel, M. Schimmel, A. E. Stott, E. Stutzmann, N. Teanby, T. Warren, R. C. Weber, M. Wieczorek, C. Yana, The seismicity of Mars. Nat. Geosci. 13, 205–212 (2020).
6
See supplementary materials.
7
J. F. Clinton, S. Ceylan, M. van Driel, D. Giardini, S. C. Stähler, M. Böse, C. Charalambous, N. L. Dahmen, A. Horleston, T. Kawamura, A. Khan, G. Orhand-Mainsant, J.-R. Scholz, F. Euchner, W. B. Banerdt, P. Lognonné, D. Banfield, E. Beucler, R. F. Garcia, S. Kedar, M. P. Panning, C. Perrin, W. T. Pike, S. E. Smrekar, A. Spiga, A. E. Stott, The Marsquake catalogue from InSight, sols 0–478. Phys. Earth Planet. Inter. 310, 106595 (2021).
8
H. Jeffreys, K. E. Bullen, Seismological Tables (British Association for the Advancement of Science, 1940).
9
A. M. Dziewonski, D. L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
10
B. L. N. Kennett, E. R. Engdahl, Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465 (1991).
11
A. Schaeffer, S. Lebedev, Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).
12
J. Ritsema, A. Deuss, H. J. van Heijst, J. H. Woodhouse, S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).
13
C. Nunn, R. F. Garcia, Y. Nakamura, A. G. Marusiak, T. Kawamura, D. Sun, L. Margerin, R. Weber, M. Drilleau, M. A. Wieczorek, A. Khan, A. Rivoldini, P. Lognonné, P. Zhu, Lunar Seismology: A Data and Instrumentation Review. Space Sci. Rev. 216, 89 (2020).
14
R. C. Weber, P.-Y. Lin, E. J. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331, 309–312 (2011).
15
R. F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011).
16
R. F. Garcia, A. Khan, M. Drilleau, L. Margerin, T. Kawamura, D. Sun, M. A. Wieczorek, A. Rivoldini, C. Nunn, R. C. Weber, A. G. Marusiak, P. Lognonné, Y. Nakamura, P. Zhu, Lunar Seismology: An Update on Interior Structure Models. Space Sci. Rev. 215, 50 (2019).
17
M. P. Panning, É. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W. B. Banerdt, Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).
18
A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W. B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).
19
P. Lognonné, J. G. Beyneix, W. B. Banerdt, S. Cacho, J. F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237–1249 (1996).
20
F. Bissig, A. Khan, M. van Driel, S. C. Stähler, D. Giardini, M. Panning, M. Drilleau, P. Lognonné, T. V. Gudkova, V. N. Zharkov, A.-C. Plesa, W. B. Banerdt, On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars. Space Sci. Rev. 214, 114 (2018).
21
InSight Marsquake Service, Mars Seismic Catalogue, InSight Mission; V4 2020-07-01. ETHZ, IPGP, JPL, ICL, ISAE-Supaero, MPS, University of Bristol Dataset (2020).
22
N. Brinkman, S. C. Stähler, D. Giardini, C. Schmelzbach, A. Khan, A. Jacob, N. Fuji, C. Perrin, P. Lognonné, E. Beucler, M. Böse, S. Ceylan, C. Charalambous, J. F. Clinton, M. van Driel, F. Euchner, A. Horleston, T. Kawamura, B. Knapmeyer-Endrun, G. Mainsant, M. P. Panning, W. T. Pike, J.-R. Scholz, J. O. A. Robertsson, W. B. Banerdt, First Focal Mechanisms of MarsquakesJ. Geophys. Res. Planets 126, e2020JE006546 (2021).
23
M. Drilleau, E. Beucler, P. Lognonné, M. P. Panning, B. Knapmeyer-Endrun, W. B. Banerdt, C. Beghein, S. Ceylan, M. van Driel, R. Joshi, T. Kawamura, A. Khan, S. Menina, A. Rivoldini, H. Samuel, S. Stähler, H. Xu, M. Bonnin, J. Clinton, D. Giardini, B. Kenda, V. Lekic, A. Mocquet, N. Murdoch, M. Schimmel, S. E. Smrekar, E. Stutzmann, B. Tauzin, S. Tharimena, MSS/1: Single-Station and Single-Event Marsquake Inversion. Earth Space Sci. 7, e2020EA001118 (2020).
24
M. A. Wieczorek, M. T. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. Planets 109, E01009 (2004).
25
G. A. Neumann, M. T. Zuber, M. A. Wieczorek, P. J. McGovern, F. G. Lemoine, D. E. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. Planets 109, E08002 (2004).
26
E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, M. Wieczorek, A. Rivoldini, C. S. Larmat, D. Giardini, J. Tromp, P. Lognonné, B. W. Banerdt, Simulations of Seismic Wave Propagation on Mars. Space Sci. Rev. 211, 571–594 (2017).
27
A. Khan, C. Liebske, A. Rozel, A. Rivoldini, F. Nimmo, J. A. D. Connolly, A.-C. Plesa, D. Giardini, A Geophysical Perspective on the Bulk Composition of Mars. J. Geophys. Res. Planets 123, 575–611 (2018).
28
G. J. Taylor, The bulk composition of Mars. Geochemistry 73, 401–420 (2013).
29
J. A. D. Connolly, The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).
30
D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. Planets 108, 5072 (2003).
31
M. Thiriet, C. Michaut, D. Breuer, A.-C. Plesa, Hemispheric Dichotomy in Lithosphere Thickness on Mars Caused by Differences in Crustal Structure and Composition. J. Geophys. Res. Planets 123, 823–848 (2018).
32
H. Samuel, P. Lognonné, M. Panning, V. Lainey, The rheology and thermal history of Mars revealed by the orbital evolution of Phobos. Nature 569, 523–527 (2019).
33
A.-C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. A. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. Planets 121, 2386–2403 (2016).
34
K. Mosegaard, A. Tarantola, Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 100, 12431–12447 (1995).
35
A. Broquet, M. A. Wieczorek, W. Fa, Flexure of the Lithosphere Beneath the North Polar Cap of Mars: Implications for Ice Composition and Heat Flow. Geophys. Res. Lett. 47, e2019GL086746 (2020).
36
B. Knapmeyer-Endrun, M. P. Panning, F. Bissig, R. Joshi, A. Khan, D. Kim, V. Lekić, B. Tauzin, S. Tharimena, M. Plasman, N. Compaire, R. F. Garcia, L. Margerin, M. Schimmel, E. Stutzmann, N. Schmerr, E. Bozdağ, A.-C. Plesa, M. A. Wieczorek, A. Broquet, D. Antonangeli, S. M. McLennan, H. Samuel, C. Michaut, L. Pan, S. E. Smrekar, C. L. Johnson, N. Brinkman, A. Mittelholz, A. Rivoldini, P. M. Davis, P. Lognonné, B. Pinot, J. Scholz, S. Stähler, M. Knapmeyer, M. van Driel, D. Giardini, W. B. Banerdt, Thickness and structure of the martian crust from InSight seismic data. Science 373, 438–443 (2021).
37
Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015).
38
S.-i. Karato, Does partial melting explain geophysical anomalies? Phys. Earth Planet. Inter. 228, 300–306 (2014).
39
C. J. Cline Ii, U. H. Faul, E. C. David, A. J. Berry, I. Jackson, Redox-influenced seismic properties of upper-mantle olivine. Nature 555, 355–358 (2018).
40
H. Kawakatsu, H. Utada, Seismic and Electrical Signatures of the Lithosphere–Asthenosphere System of the Normal Oceanic Mantle. Annu. Rev. Earth Planet. Sci. 45, 139–167 (2017).
41
T. Spohn, Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus 90, 222–236 (1991).
42
D. J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983).
43
A. Morschhauser, M. Grott, D. Breuer, Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212, 541–558 (2011).
44
H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. London Ser. A 349, 285–293 (1994).
45
T. Yoshizaki, W. F. McDonough, The composition of Mars Geochim. Cosmochim. Acta 273, 137–162 (2020).
46
J. Ruiz, V. López, J. M. Dohm, The present-day thermal state of Mars. Icarus 207, 631–637 (2010).
47
L. M. Parro, A. Jiménez-Díaz, F. Mansilla, J. Ruiz, Present-day heat flow model of Mars. Sci. Rep. 7, 45629 (2017).
48
S. E. Smrekar, P. Lognonné, T. Spohn, W. B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, W. Folkner, N. Fuji, R. F. Garcia, D. Giardini, M. Golombek, M. Grott, T. Gudkova, C. Johnson, A. Khan, B. Langlais, A. Mittelholz, A. Mocquet, R. Myhill, M. Panning, C. Perrin, T. Pike, A.-C. Plesa, A. Rivoldini, H. Samuel, S. C. Stähler, M. van Driel, T. Van Hoolst, O. Verhoeven, R. Weber, M. Wieczorek, Pre-mission InSights on the Interior of Mars. Space Sci. Rev. 215, 3 (2019).
49
H. Y. McSween Jr., G. J. Taylor, M. B. Wyatt, Elemental composition of the Martian crust. Science 324, 736–739 (2009).
50
S. R. Taylor, S. M. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge Univ. Press, 2008).
51
G. J. Taylor, W. Boynton, J. Brückner, H. Wänke, G. Dreibus, K. Kerry, J. Keller, R. Reedy, L. Evans, R. Starr, S. Squyres, S. Karunatillake, O. Gasnault, S. Maurice, C. d’Uston, P. Englert, J. Dohm, V. Baker, D. Hamara, D. Janes, A. Sprague, K. Kim, D. Drake, Bulk composition and early differentiation of Mars. J. Geophys. Res. Planets 111, E03S10 (2006).
52
V. Sautter, M. J. Toplis, P. Beck, N. Mangold, R. Wiens, P. Pinet, A. Cousin, S. Maurice, L. LeDeit, R. Hewins, O. Gasnault, C. Quantin, O. Forni, H. Newsom, P.-Y. Meslin, J. Wray, N. Bridges, V. Payré, W. Rapin, S. Le Mouélic, Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos 254–255, 36–52 (2016).
53
H. Y. McSween Jr., T. L. Grove, M. B. Wyatt, Constraints on the composition and petrogenesis of the Martian crust. J. Geophys. Res. Planets 108, 5135 (2003).
54
S. C. Stähler, A. Khan, W. B. Banerdt, P. Lognonné, D. Giardini, S. Ceylan, M. Drilleau, A. C. Duran, R. F. Garcia, Q. Huang, D. Kim, V. Lekic, H. Samuel, M. Schimmel, N. Schmerr, D. Sollberger, É. Stutzmann, Z. Xu, D. Antonangeli, C. Charalambous, P. Davis, J. C. E. Irving, T. Kawamura, M. Knapmeyer, R. Maguire, A. G. Marusiak, M. P. Panning, C. Perrin, A.-C. Plesa, A. Rivoldini, C. Schmelzbach, G. Zenhäusern, É. Beucler, J. Clinton, N. Dahmen, M. van Driel, T. Gudkova, A. Horleston, W. T. Pike, M. Plasman, S. E. Smrekar, Seismic detection of the martian core. Science 373, 443–448 (2021).
55
InSight Mars SEIS Data Service, SEIS raw data, Insight Mission. IPGP, JPL, CNES, ETHZ, ICL, MPS, ISAE-Supaero, LPG, MFSC (2019).
56
InSight Mars SEIS Data Service, InSight SEIS Data Bundle. PDS Geosciences (GEO) Node (2019).
57
InSight Marsquake Service, Mars Seismic Catalogue, InSight Mission; V4 2020-10-01 (2020).
58
J.-R. Scholz, R. Widmer-Schnidrig, P. Davis, P. Lognonné, B. Pinot, R. F. Garcia, K. Hurst, L. Pou, F. Nimmo, S. Barkaoui, S. de Raucourt, B. Knapmeyer-Endrun, M. Knapmeyer, G. Orhand-Mainsant, N. Compaire, A. Cuvier, É. Beucler, M. Bonnin, R. Joshi, G. Sainton, E. Stutzmann, M. Schimmel, A. Horleston, M. Böse, S. Ceylan, J. Clinton, M. van Driel, T. Kawamura, A. Khan, S. C. Stähler, D. Giardini, C. Charalambous, A. E. Stott, W. T. Pike, U. R. Christensen, W. B. Banerdt, Detection, Analysis, and Removal of Glitches From InSight’s Seismic Data From Mars. Earth Space Sci. 7, e2020EA001317 (2020).
59
N. Compaire et al., Earth and Space Science Open Archive (2020), p. 25.
60
I. J. Daubar, P. Lognonné, N. A. Teanby, G. S. Collins, J. Clinton, S. Stähler, A. Spiga, F. Karakostas, S. Ceylan, M. Malin, A. S. McEwen, R. Maguire, C. Charalambous, K. Onodera, A. Lucas, L. Rolland, J. Vaubaillon, T. Kawamura, M. Böse, A. Horleston, M. Driel, J. Stevanović, K. Miljković, B. Fernando, Q. Huang, D. Giardini, C. S. Larmat, K. Leng, A. Rajšić, N. Schmerr, N. Wójcicka, T. Pike, J. Wookey, S. Rodriguez, R. Garcia, M. E. Banks, L. Margerin, L. Posiolova, B. Banerdt, A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. J. Geophys. Res. Planets 125, e2020JE006382 (2020).
61
J. F. Montalbetti, E. R. Kanasewich, Enhancement of Teleseismic Body Phases with a Polarization Filter. Geophys. J. Int. 21, 119–129 (1970).
62
D. Davies, E. J. Kelly, J. R. Filson, Vespa Process for Analysis of Seismic Signals. Nat. Phys. Sci. 232, 8–13 (1971).
63
S. Rost, C. Thomas, Improving Seismic Resolution Through Array Processing Techniques. Surv. Geophys. 30, 271–299 (2009).
64
N. C. Schmerr, B. M. Kelly, M. S. Thorne, Broadband array observations of the 300 km seismic discontinuity. Geophys. Res. Lett. 40, 841–846 (2013).
65
G. L. Choy, P. G. Richards, Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves. Bull. Seismol. Soc. Am. 65, 55 (1975).
66
R. Butler, Shear-wave travel times from SS. Bull. Seismol. Soc. Am. 69, 1715–1732 (1979).
67
C. S. Lynnes, L. J. Ruff, Use of the PP phase to study the earthquake source. Geophys. Res. Lett. 12, 514–517 (1985).
68
A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
69
A. Khan, K. Mosegaard, An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. Planets 107, 5036 (2002).
70
L. Stixrude, C. Lithgow-Bertelloni, Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. J. Geophys. Res. 110, B03204 (2005).
71
L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals - II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).
72
J. A. D. Connolly, A. Khan, Uncertainty of mantle geophysical properties computed from phase equilibrium models. Geophys. Res. Lett. 43, 5026–5034 (2016).
73
K. Lodders, B. Fegley Jr., ., An Oxygen Isotope Model for the Composition of Mars. Icarus 126, 373–394 (1997).
74
C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999).
75
A. Khan, J. A. D. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. Planets 113, E07003 (2008).
76
G. Müller, The reflectivity method: A tutorial. J. Geophys. 58, 153–174 (1985).
77
H. P. Crotwell, T. J. Owens, J. Ritsema, The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol. Res. Lett. 70, 154–160 (1999).
78
T. Ruedas, D. Breuer, On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet. J. Geophys. Res. Planets 122, 1554–1579 (2017).
79
J. E. P. Connerney, M. H. Acuña, N. F. Ness, T. Spohn, G. Schubert, Mars Crustal Magnetism. Space Sci. Rev. 111, 1–32 (2004).
80
W. K. Hartmann, M. Malin, A. McEwen, M. Carr, L. Soderblom, P. Thomas, E. Danielson, P. James, J. Veverka, Evidence for recent volcanism on Mars from crater counts. Nature 397, 586–589 (1999).
81
G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J. W. Head, A. T. Basilevsky, B. A. Ivanov, S. C. Werner, S. van Gasselt, J. B. Murray, T. McCord, HRSC Co-investigator Team, Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979 (2004).
82
W. S. Kiefer, Q. Li, Mantle convection controls the observed lateral variations in lithospheric thickness on present-day Mars. Geophys. Res. Lett. 36, L18203 (2009).
83
W. S. Kiefer, Q. Li, Water undersaturated mantle plume volcanism on present-day Mars. Meteorit. Planet. Sci. 51, 1993–2010 (2016).
84
F. Poulet, N. Mangold, B. Platevoet, J.-M. Bardintzeff, V. Sautter, J. F. Mustard, J.-P. Bibring, P. Pinet, Y. Langevin, B. Gondet, A. Aléon-Toppani, Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. Icarus 201, 84–101 (2009).
85
S. R. Taylor, S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, 1985).
86
F. M. McCubbin, H. Nekvasil, A. D. Harrington, S. M. Elardo, D. H. Lindsley, Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars. J. Geophys. Res. Planets 113, E11013 (2008).
87
H. Y. McSween Jr., ., Petrology on Mars. Am. Mineral. 100, 2380–2395 (2015).
88
J. L. Bandfield, V. E. Hamilton, P. R. Christensen, A Global View of Martian Surface Compositions from MGS-TES. Science 287, 1626–1630 (2000).
89
M. K. McNutt, Lithospheric flexure and thermal anomalies. J. Geophys. Res. Solid Earth 89, 180 (1984).
90
B. C. Hahn, S. M. McLennan, E. C. Klein, Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophys. Res. Lett. 38, L14203 (2011).
91
J. B. Balta, H. Y. McSween, Water and the composition of Martian magmas. Geology 41, 1115–1118 (2013).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();