Notice: file_put_contents(): Write of 220205 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls | Management Science

Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls

Published Online:https://doi.org/10.1287/mnsc.2015.2374

We report the results of the first large-scale, long-term, experimental test between two crowdsourcing methods: prediction markets and prediction polls. More than 2,400 participants made forecasts on 261 events over two seasons of a geopolitical prediction tournament. Forecasters were randomly assigned to either prediction markets (continuous double auction markets) in which they were ranked based on earnings, or prediction polls in which they submitted probability judgments, independently or in teams, and were ranked based on Brier scores. In both seasons of the tournament, prices from the prediction market were more accurate than the simple mean of forecasts from prediction polls. However, team prediction polls outperformed prediction markets when forecasts were statistically aggregated using temporal decay, differential weighting based on past performance, and recalibration. The biggest advantage of prediction polls was at the beginning of long-duration questions. Results suggest that prediction polls with proper scoring feedback, collaboration features, and statistical aggregation are an attractive alternative to prediction markets for distilling the wisdom of crowds.

This paper was accepted by Uri Gneezy, behavioral economics.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.