University of Exeter
Browse

Transient thermal finite element analysis of CFC-Cu ITER monoblock using X-ray tomography data

Download (2.77 MB)
journal contribution
posted on 2025-08-06, 14:50 authored by Llion Evans, L. Margetts, V. Casalegno, L.M. Lever, J. Bushell, T. Lowe, A. Wallwork, Philippe G. Young, A. Lindemann, M. Schmidt, P.M. Mummery
The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32. μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194. μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.

Funding

Culham Centre for Fusion Energy

EP/F001452/1

EP/F007906/1

EP/I02249X/1

EP/I501045

EP/K000225/1

EP/K504178/1

Engineering and Physical Sciences Research Council (EPSRC)

European Community's Seventh Framework Programme (FP7/2007-2013)

RI-283493

History

Related Materials

Rights

Copyright © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Notes

Open Access article

Journal

Fusion Engineering and Design

Publisher

Elsevier

Language

en

Department

  • Engineering

Usage metrics

    University of Exeter

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC