Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 1;57(3):853-63.
doi: 10.1016/s0360-3016(03)00346-8.

Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study

Affiliations

Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study

I Frank Ciernik et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To investigate the usefulness of hardware coregistered PET/CT images for target volume definition.

Methods and materials: Thirty-nine patients presenting with various solid tumors were investigated. CT and a FDG-PET were obtained in treatment position in an integrated PET/CT scanner, and coregistered images were used for treatment planning. First, volume delineation was performed on the CT data. In a second step, the corresponding PET data were used as an overlay to the CT data to define the target volume. Delineation was done independently by two investigators.

Results: Coregistered PET/CT showed good fusion accuracy. The GTV increased by 25% or more because of PET in 17% of cases with head-and-neck (2/12) and lung cancer (1/6), and in 33% (7/21) in cancer of the pelvis. The GTV was reduced > or =25% in 33% of patients with head-and-neck cancer (4/12), in 67% with lung cancer (4/6), and 19% with cancer of the pelvis (4/21). Overall, in 56% (22/39) of cases, GTV delineation was changed significantly if information from metabolic imaging was used in the planning process. The modification of the GTV translated into altered PTV changes exceeding >20% in 46% (18/39) of cases. With PET, volume delineation variability between two independent oncologists decreased from a mean volume difference of 25.7 cm(3) to 9.2 cm(3) associated with a reduction of the standard deviation from 38.3 cm(3) to 13.3 cm(3) (p = 0.02). In 16% of cases, PET/CT revealed distant metastasies, changing the treatment strategy from curative to palliative.

Conclusion: Integrated PET/CT for treatment planning for three-dimensional conformal radiation therapy improves the standardization of volume delineation compared with that of CT alone. PET/CT has the potential for reducing the risk for geographic misses, to minimize the dose of ionizing radiation applied to non-target organs, and to change the current practice to three-dimensional conformal radiation therapy planning by taking into account the metabolic and biologic features of cancer. The impact on treatment outcome remains to be demonstrated.

PubMed Disclaimer

Publication types

MeSH terms