Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 27;33(4):770-779.e4.
doi: 10.1016/j.cub.2023.01.007. Epub 2023 Feb 13.

Complex macroevolution of pterosaurs

Affiliations
Free article

Complex macroevolution of pterosaurs

Yilun Yu et al. Curr Biol. .
Free article

Abstract

Pterosaurs, the earliest flying tetrapods, are the subject of some recent quantitative macroevolutionary analyses from different perspectives.1-2 Here, we use an integrative approach involving newly assembled phylogenetic and body size datasets, net diversification rates, morphological rates, and morphological disparity to gain a holistic understanding of the pterosaur macroevolution. The first two parameters are important in quantitative analyses of macroevolution, but they have been rarely used in previous pterosaur studies.1,3,4,2,5,6,7,8,9,10,11,12 Our study reveals an ∼115-Ma period-from Early Triassic to Early Cretaceous-of multi-wave increasing net diversification rates and disparity, as well as high morphological rates, followed by an ∼65-Ma period-from Early Cretaceous to the end of the Cretaceous-of mostly negative net diversification rates, decreasing disparity, and relatively low morphological rates in pterosaur evolution. Our study demonstrates the following: (1) body size plays an important role in pterosaur lineage diversification during nearly their whole evolutionary history, and the evolution of locomotion, trophic, and ornamental structures also plays a role in different periods; (2) birds, the other major flying tetrapod group at the time, might have affected pterosaur macroevolution for ∼100 Ma; and (3) different mass extinction events might have affected pterosaur evolution differently. Particularly, the revealed decline in pterosaur biodiversity during the Middle and Late Cretaceous periods provides further support for the possible presence of a biodiversity decline of large-sized terrestrial amniotes starting in the mid-Cretaceous,13,14 which may have been caused by multiple factors including a global land area decrease during these periods.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Publication types

LinkOut - more resources