Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/b5d17afc317d3f74df42b75b8e399201.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Rates of Spontaneous Mutation -- Drake et al. 148 (4): 1667 -- Genetics
The Wayback Machine - https://web.archive.org/web/20100821100757/http://www.genetics.org:80/cgi/content/full/148/4/1667

Genetics, Vol. 148, 1667-1686, April 1998, Copyright © 1998

Rates of Spontaneous Mutation

John W. Drakea, Brian Charlesworthb, Deborah Charlesworthb, and James F. Crowc
a Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233,
b Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, United Kingdom,
c Genetics Department, University of Wisconsin, Madison, Wisconsin 53706

Corresponding author: John W. Drake, Laboratory of Molecular Genetics E3-01, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, drake{at}niehs.nih.gov (E-mail).


*  ABSTRACT
*TOP
*ABSTRACT
*THE MAGNITUDES OF MUTATION...
*THE EVOLUTION OF MUTATION...
*LITERATURE CITED

Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 104 bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 103 to 4 x 107 bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1–100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates.


RATES of spontaneous mutation per replication per measured target vary by many orders of magnitude depending on the mutational target size (from 1 to >1010 b, where b stands for base or base pair as appropriate), the average mutability per b (from 10-4 to 10-11 per b per replication), and the specific mutability of a particular b (which can vary by >104-fold). A mutation rate comprises all kinds of mutations in a mutational target: base pair substitutions, base additions and deletions (often producing frameshifting in exons), and larger or more complex changes. Attempts to detect order in these mutation rates have revealed certain underlying patterns. We describe these patterns, note some of their consequences, and consider their evolutionary origins.

Among the mutations that affect a typical gene, different kinds produce different impacts. A very few are at least momentarily adaptive on an evolutionary scale. Many are deleterious. Some are neutral, that is, they produce no effect strong enough to permit selection for or against; a mutation that is deleterious or advantageous in a large population may be neutral in a small population, where random drift outweighs selection coefficients. The impact of mutation is quite different in different DNA sequences. It is maximal in a conventional gene or exon, and at least transitorily less in a gene whose function is required rarely or is redundant. If adaptive mutations are rare, as seems to be the case, then rates of DNA sequence evolution are driven mainly by mutation and random drift, as KIMURA 1983A Down has argued. In this case, the proportion of neutral mutations at a site or locus is the ratio of its rate of evolution to that of a region that can be considered neutral, such as a pseudogene. Most newly arisen mutations in functional genes are deleterious, but the fraction may approach zero for spacer DNAs such as introns and intergenic regions. Of course, some protein evolution certainly results from favorable mutations, and to this extent the neutral fraction is overestimated.

The existence of strong taxonomic patterns of mutability implies that genomic mutation rates are close to an evolutionary equilibrium whose driving forces we consider here. The evolution of those rates is likely to reflect their average effect over long periods, but this effect is likely to have been insignificant for much of the spacer DNA.


*  THE MAGNITUDES OF MUTATION RATES
*TOP
*ABSTRACT
*THE MAGNITUDES OF MUTATION...
*THE EVOLUTION OF MUTATION...
*LITERATURE CITED

Terminology:
Table 1 describes the abbreviations and parameters we will use to describe the mutation process. Note that the effective genome size Ge is similar to the total genome size G in microbes, whereas Ge < G in higher eukaryotes. The most reliable estimates of mutational parameters come from microbes whose genes are encoded by DNA ("DNA-based microbes"); as we discuss, there are considerable uncertainties attached to estimates from RNA viruses and higher eukaryotes.


 
View this table:
In this window
In a new window

 
Table 1. Parameters used in describing the mutation process

Mutation rates in lytic RNA viruses:
Few investigators of the genetics of RNA viruses have focused specifically on mutation rates, although mutant frequencies are often noted to be high compared with those observed in microbes with DNA chromosomes. In a recent survey (DRAKE 1993A Down), most of the mutation rates that could be calculated were necessarily based on results obtained with very small and thus potentially unrepresentative mutational targets, and contained other experimental and calculational uncertainties. These uncertainties included lack of information about what proportion of lytic virus replication is linear (repeated copying of the same template) and what is binary (as in most DNA replication), as well as lack of information about the relative contributions of transcription and reverse transcription to retroviral mutation rates. (J.W.D. wishes to correct a typographical error in his 1993a report: the minus signs do not belong in Equation 2aEquation 2b and Equation 3.)

Many (but not all) of the mutation-rate calculations for these viruses were performed by transforming a mutant frequency f into a mutation rate µ, where f was measured in large populations that had accumulated mutants in the putative absence of selection. For linear replication, µlin = f regardless of the extent of growth. For binary replication, µbin = where N0 is the initial and N is the final population size. [This holds for N0 > 1/µbin; for N0 < 1/µbin, µbin = .] Because the relative numbers of binary and linear replications are unknown, DRAKE 1993A Down simply averaged µlin and µbin to obtain µm. µlin was at most about an order of magnitude greater than µbin so that µm was a little less than µlin/2 and about sixfold larger than µbin (range 2.2- to 9.6-fold). In addition to these uncertainties, the relative fidelities of binary and linear RNA replication are yet to be determined, and differences of a few-fold would not be surprising. In addition, the calculational uncertainties were roughly similar in magnitude to the experimental uncertainties. The results from DRAKE 1993A Down are summarized in Table 2. For the lytic RNA viruses, µg {approx} 1 but with considerable scatter. Values of µg > 2 are likely to be overestimates because such values would tend to extinguish the species.


 
View this table:
In this window
In a new window

 
Table 2. Mutation rates per genome per replication in lytic RNA viruses

Because a lytic virus replicates repeatedly in each infective cycle, an infected cell yields virus carrying several new mutations per particle. Most of these will be deleterious. The high mutation rate in these viruses may contribute strongly to their characteristic low specific infectivities (infectious particles per physical particle). (Another contributor to low specific activity is the inherent lability of the RNA backbone.) Such viral populations are extremely vulnerable to increased mutation rates, even a three-fold increase leading to extinction (HOLLAND et al. 1990 Down).

In addition to the entries in Table 2, two reports have appeared in which a mutational target of foreign origin was inserted into a lytic RNA virus that was then passaged extensively and eventually screened for accumulated mutations. In the first case (KEARNEY et al. 1993 Down), the target resided in tobacco mosaic virus which was serially passed through plants ten times, each passage expanding an inoculum of ~103 infective units (iu) to ~1015 iu. After the final passage, the target sequence was reverse-transcribed and amplified by the polymerase chain reaction (PCR) from a number of isolates and then sequenced. The mutant frequencies were 26/16158 b sequenced (16.1 x 10-4) after passage, and = 9.7 x 10-4 before passage, the latter reasonably attributable to reverse transcription (RT) and PCR errors. While this difference is not significant, if taken at face value it yields a net f = µlin {approx} 6.3 x 10-4 per b. If the population is considered to have expanded from 103 to 1015x10 iu, µbin {approx} 2 x 10-6. Then µm {approx} 3 x 10-4 per b and, for G = 6395 b (GOELET et al. 1982 Down), µg {approx} 2. This value is typical of lytic RNA viruses. However, because µlinbin > 300, this calculation is not robust; µg could approach 0.01 if binary replications predominated. Another confounding factor is the possibility of bottlenecks. A target size of about 200 b, an inoculum of about 1000 and a momentary f of 10-4 would ensure the transmission of about 20 pre-existing mutants at passage. However, if a small fraction of the inoculum contributed heavily to the whole-plant yield, bottlenecks could still occur and the mutation rate would be underestimated.

In the second case (SCHNELL et al. 1996 Down), the target resided in vesicular stomatitis virus (VSV) which was serially passaged through cultured cells 15 times. Each inoculum of about 105 plaque-forming units (pfu) (applied to about 107 cells) was expanded to about 1011 pfu. The target from six isolates was then reverse-transcribed, PCR-amplified, and sequenced. The mutant frequency was 2/2400 b with no estimate of the contribution of RT and PCR errors. Here f = µlin {approx} 8.3 x 10-4 and, with N0 = 106 and N = 1015x6, µbin {approx} 4.3 x 10-6; then µm {approx} 4.2 x 10-4 per b and µg {approx} 4.7, a result indistinguishable from the values of 2.8 and 4.3 listed in DRAKE 1993A Down. However, because µlinbin {approx} 200, the calculation is again not robust and µg could approach 0.05 if binary replications predominated. Here, a target size of 400 b, an inoculum of about 105 and an f of as little as 10-4 would ensure the transmission of about 4000 preexisting mutants at passage, thus preventing bottlenecks. A more arcane possibility is that the target sequence, a bacterial gene encoding chloramphenicol acetyltransferase, provided an unexpected selective advantage when functional; this could be easily measured. In the end, however, a deeper understanding of these numbers will require much more analysis of the relative number and order of linear and binary replication events, including the supra-binary component arising from multiple cell cycles per passage.

Mutation rates in retro-elements:
In contrast to the lytic RNA viruses, a retrovirus or retrotransposon chromosome replicates precisely three times per infective cycle. Transcription by the host RNA polymerase produces an RNA genome. Reverse transcriptase then catalyzes two replications to generate a DNA-based chromosome that integrates into the host chromosome (of a different cell in the case of a packaged retrovirus, or of the same cell in the case of a retrotransposon) and thereafter assumes a far lower mutation rate. The resulting mutant frequency is the sum of the mutation rates of the three steps, whose magnitudes have not yet been factored. Table 3 lists those rates described in DRAKE 1993A Down which were based on large mutational targets, together with several measurements reported since 1993, including one for a long-terminal-repeat retrotransposon. These retro-element rates are roughly an order of magnitude lower than the RNA-virus rates listed in Table 2. Because of the large mutational target sizes employed, the rate differences among these viruses may be real. (The rate does not correlate with the retroviral or artificial origin of the mutational target sequence.) Compared to the lytic viruses, the retroviral mutation rates may not appreciably reduce specific infectivity. Spleen necrosis virus is slightly more resistant to increased mutation rates than are lytic RNA viruses, being obliterated only after a roughly 13-fold increase (PATHAK and TEMIN 1992).


 
View this table:
In this window
In a new window

 
Table 3. Mutation rates per genome per replication in retroelements

Mutation rates in DNA-based microbes:
Rates of spontaneous mutation in this class of organisms were last surveyed in DRAKE 1991 Down and are summarized in Table 4 using a few updated values for genome sizes. Unlike the experimental and theoretical limits to the accuracy of the RNA-virus values, the DNA-microbe values were determined in well-studied systems using robust calculations, and the individual values are likely to be accurate to within two-fold. Table 4 shows that µb and G vary inversely and smoothly over nearly four orders of magnitude while µg remains constant. Given the paucity of general, constant values in evolutionary processes, this particular constant is strikingly robust.


 
View this table:
In this window
In a new window

 
Table 4. Mutation rates per genome per replication in microbes with DNA chromosomes

Heat promotes a variety of base-loss and base-modification reactions and can be strongly mutagenic. The archeon Sulfobolus acidocaldarius growing at 75° produces pyrE and pyrF mutations at 2.8 ± 0.7 and 1.5 ± 0.6 per 107 cell divisions, respectively ( JACOBS and GROGAN 1997 Down). Although genome size, mutational target size and efficiency of mutation detection are not yet measured in this system, pyrE genes contain 600–720 b and pyrF genes contain 700–1200 b in several bacteria and eukaryotes, and G = (2–3) x 106 for related bacteria (D. W. GROGAN, personal communication). Using a typical C value of 3.12 to correct for the efficiency of mutation detection (DRAKE 1991 Down), µg = 0.0005–0.005; using the mid-range values for the above parameters, µg {approx} 0.002. Thus, although careful measurements remain to be performed in this system, the magnitude of µg seems likely to be conserved even in a potentially hypermutagenic environment.

As noted previously, RNA-virus and retrovirus populations are likely to be extinguished when their mutation rates are increased to a few-fold over 1. To be similarly jeopardized, the microbes in Table 4 would have to experience mutation-rate increases on the order of 103-fold. However, they are to some extent buffered against immediate extinction in two ways. First, a substantial fraction of their genes are only infrequently required for growth, particularly under laboratory conditions. Second, diploidy, when it occurs, will protect for a while against the effects of recessive mutations. As described in DRAKE 1991 Down, Escherichia coli can survive µg {approx} 10 for at least 10 generations (although such cultures contain many dead cells), and Saccharomyces cerevisiae can survive µg {approx} 60 for at least nine generations while diploid, although the haploid segregants are inviable; haploids can survive µg {approx} 2, although most cells grow poorly.

The E. coli F plasmid ordinarily replicates in step with the host chromosome, uses most of the same enzymes, and has the same µb as the host (WILLETTS and SKURRAY 1987 Down; DRAKE 1991 Down). KUNZ and GLICKMAN 1983 Down and CHRISTENSEN et al. 1985 Down reported that the F mutation rate increases during conjugation, and TADDEI et al. 1995 Down suggested that this might be an example of the µg rule implied in Table 4. In this respect F would resemble phage {lambda}, which displays the host mutation rate as a prophage but the appropriately higher rate when replicating lytically. Unfortunately, while the data of KUNZ and GLICKMAN 1983 Down suggest that the spectrum changes markedly during conjugation, neither F study provides the mutational spectrum needed to calculate µb . Using either the calculations of the authors or calculations based on the methods described in DRAKE 1991 Down and noting that base pair substitutions seem to occur preferentially during conjugation (KUNZ and GLICKMAN 1983 Down), the conjugational F mutation rate appears to be roughly five-fold to perhaps 20-fold higher than the standard rate. The E. coli genome is about 47-fold larger than the F genome (WILLETTS and SKURRAY 1987 Down). Thus, additional measurements are needed to determine whether F follows this µg rule.

Two predictions: A plot of log µb versus log G (DRAKE 1991 Down) reveals a gap between the viral and the cellular entries. The 578-kb genome of Mycoplasma genitalium (PETERSON et al. 1995 Down) falls at the midpoint of this gap. An interpolation from Table 4 predicts µb = 5.9 x 109 for this organism.

Mutation rates in bacteriophage T4 and herpes simplex virus type 1 (HSV) display an intriguing relationship which suggests that at least one strain of HSV may harbor a mutator mutation. These two viruses have similar genome sizes and modes of DNA replication. In HSV stocks grown from small inoculum to N = 108–109 iu, the frequency of herpesvirus tk mutants is about 6.2 x 104 (HALL et al. 1984 Down). The tk gene has about 1150 b (MCKNIGHT 1980 Down) and G = 152,260 b (MCGEOCH et al. 1988 Down). No suitable mutational spectrum is available, so C must be guessed by taking the average of the values listed in DRAKE 1991 Down; then C = 3.12, µb {approx} 1.7 x 107 and µg {approx} 0.026. This µg is roughly eight-fold higher than the values in Table 4. Consider next the antimutator mutations that arise in the DNA polymerase gene of phage T4. These reduce the rates of only certain pathways, while increasing the rates of others; overall, they do not reduce µb (DRAKE 1993B Down). A strong, general antimutator is probably difficult or impossible to obtain in one or a few mutational steps (DRAKE 1993B Down), the exception being by the reversal of a mutator mutation that itself arose by a single mutation. HSV DNA polymerase mutants selected for resistance to phosphonoacetic acid (PPA) are sometimes antimutators. These reduce the frequency of tk mutants of presumably many kinds (HALL et al. 1984 Down), and therefore presumably do reduce µb ; the reduction is roughly 45-fold, giving µg {approx} 0.0006 (about five-fold lower than than the values in Table 4). In contrast, wild-type phage T4 is resistant to PPA; however, T4 DNA-polymerase mutator mutations are sensitive to PPA. When selection is then applied for PPA resistance in these mutator strains, the result is polymerase antimutator mutations that negate the mutator phenotypes (REHA-KRANTZ et al. 1993 Down). These results suggest that this HSV isolate may carry a naturally occurring mutator mutation. Results described next reveal that this is a reasonable conjecture.

Microbial hypermutation: Microbial mutation rates can increase over short periods for physiological or regulatory reasons, or more permanently by the action of mutator mutations. In addition, particular portions of the genome can be maintained inherently hypervariable through specific, local mechanisms such as the cassette switching that mediates phase variation in bacterial and other pathogens and mating type in yeasts and fungi (MOXON et al. 1994 Down; SASAKI 1994 Down).

Microbial mutation rates can increase physiologically in several ways. NINIO 1991 Down suggested that errors of transcription, translation, and molecular segregation will create transient mutators which, on his estimate, would contribute modestly to single mutations but strongly to multiple mutations per genome per replication. In Neurospora crassa (AUERBACH 1959 Down) and phage T4 (DRAKE 1966 Down; DRAKE and RIPLEY 1994 Down) (and probably in all organisms at various times), resting genomes mutate in a time-dependent, replication-independent fashion because they accumulate spontaneous DNA damage that engenders mutations when DNA replication resumes, and that may even alter transcription to produce a mutant phenotype before replication. Starving bacteria also mutate in a time-dependent manner, one that probably involves immediate DNA synthesis (e.g., FOSTER 1997 Down; TORKELSON et al. 1997 Down). In addition, DNA damage sometimes elicits the process of translesion bypass, in which DNA primer extension passes an unrepaired lesion. Among microbes, this process can range from fully constitutive, as in phage T4 (DRAKE and RIPLEY 1994 Down), to strongly inducible, as in the E. coli SOS response (WALKER 1984 Down). The SOS response increases mutation rates for roughly one cell generation, even in undamaged parts of the genome (WALKER 1984 Down). Because DNA damage is a byproduct of ordinary endogenous processes such as base depurination and deamination, base damage from by-products of oxygen and methyl metabolism and so on, a few cells in any population are SOS-induced at any time. The fraction of evolutionary change driven by such transient hypermutability remains unknown.

For bacteria, chemostats or daily serial transfers constitute alien environments within which rapid and complex adaptation occurs by mutation and selection. Because at least 10 genes can generate mutator mutations, E. coli populations generate roughly 10-6–10-5 mutator mutants per replication. However, strong mutators are deleterious (QUINONES and PIECHOCKI 1985 Down) and do not accumulate; an ordinary E. coli culture accumulates <10-5 mutator mutants (MAU et al. 1997). On the other hand, mutators can be strongly selected when their frequency and strength are high enough so that they generate more beneficial mutations than do the non-mutators in the same population (CHAO and COX 1983 Down; MAO et al. 1997 Down); the deleterious mutators are selected indirectly along with the adaptive mutation.

In contrast to freshly grown laboratory cultures, mutator mutants are found at frequencies that can exceed 10-2 among hospital isolates of E. coli and Salmonella enterica ( JYSSUM 1960 Down; GROSS and SIEGEL 1981 Down; LECLERC et al. 1996 Down), or after extensive serial passage in the laboratory (SNIEGOWSKI et al. 1997 Down). Mutator mutations are common among commensal as well as pathogenic strains, and may increase mutation rates either strongly or weakly (MATIC et al. 1997 Down). Thus, the continual adaptations occurring during bacterial invasions of new hosts or culture conditions suffices to enhance the frequency of mutators by at least 1000-fold, although the subsequent deleterious effects of the mutator mutations may prevent total replacement among hosts or serially transferred lines. In order to understand the roles of mutator mutations in both transitory adaptations and long-term evolution, it will be important to determine the frequencies of mutators in natural populations in both stable and strongly fluctuating environments. Theory describing conditions under which mutators can speed adaptation in asexual microbes (LEIGH 1970 Down; TADDEI et al. 1997 Down) encourages such investigations.

Mutation rates in higher eukaryotes based on specific loci:
Plants and animals contrast with the organisms in Table 2 Table 3 Table 4 in several ways. One striking difference is in the amount of DNA. G is one to several orders of magnitude greater in plants and animals than in microbial eukaryotes. Most of the increase is not in functional genes but rather in introns and inter-genic regions, so that Ge << G. A second difference is that higher eukaryotes may display important age and sex effects. As we discuss below, in mammals (and especially in humans), the rate of gene mutation per generation is much higher in males and particularly older males, mainly because of the much larger number of germ-line cell divisions ancestral to a sperm than to an egg. A third difference is that mutation rates in animals (and plants) are often equated with the mutant frequency per gamete (or, occasionally, per diploid). Sometimes, however, mutants appear in clusters that reflect the premeiotic expansion of a single event (MULLER 1952 Down; WOODRUFF et al. 1997 Down). Unrecognized clusters are not a problem, because a cluster increases proportionally the probability of finding the mutation. When a cluster is observed, each mutant individual in the cluster should be counted as a mutation when calculating the mutation rate per sexual generation; more complex calculations of within-generation mutation accumulation are difficult because of uncertainties about the topology of normal and mutant cell expansion. A fourth difference is that evolutionary mechanisms for adjusting mutation rates may be quite different in sexual eukaryotes than in rarely sexual microbes because, at least in outbreeding sexual species, the process of meiosis uncouples rate-adjusting mutations from the mutations they engender (LEIGH 1970 Down, LEIGH 1973 Down). Also, sexual reproduction permits the population to rid itself of deleterious mutations more efficiently than is possible in asexual systems (KIMURA and MARUYAMA 1966 Down; KONDRASHOV 1984 Down, KONDRASHOV 1988 Down).

In the species we discuss, the data for mutation rates in males are often more extensive and reliable than those for rates in females, so that our calculations frequently must focus on data from males. In all of these species, mutations with small effects tend to go uncounted. Unlike the situation with microbes, where mutational spectra predict the efficiency of detection, the present values are all minimum estimates uncorrected for poorly detected kinds of mutations.

Zea mays: Plants have yielded remarkably few estimates of mutation rates. In plants such as maize where genetic methods are well established, mutation rates are relatively easily estimated by crosses to strains homozygous for mutations causing visible phenotypes. There is wide variation from locus to locus, with a mean of 7.7 x 10-5 and a range of from <0.1 x 10-5 (waxy) to 49.2 x 10-5 (R ) mutations per gamete for eight maize loci (STADLER 1930 Down). There are few comparable data from other plants apart from evidence for lower rates in polyploids (STADLER 1929 Down). Lack of further information impedes attempts to extrapolate to the entire genome.

Caenorhabditis elegans: There are about 8.2 cell divisions ancestral to sperm and about 10.0 ancestral to eggs (KIMBLE and WARD 1988 Down), so we will use the average, 9.1. Mutation rates and numbers of codons have been determined for five loci. Taking the gene sizes as three times the number of codons plus 100 b for regulatory and splicing sequences, using an average C = 3.12 to correct for the efficiency of mutation detection (DRAKE 1991 Down) and dividing by the 9.1 cell divisions per sexual generation, we obtain µb(unc-22) = 1.17 x 10-11, µb(unc-54) = 1.68 x 10-11, µb(unc-93) = 52.4 x 10-11, µb(unc-105) = 4.54 x 10-11, and µb(sup-10) = 52.6 x 10-11 (GREENWALD and HORVITZ 1980 Down; KARN et al. 1983 Down; EIDE and ANDERSON 1985 Down; BENIAN et al. 1989 Down; LEVIN and HORVITZ 1992 Down; LIU et al. 1996 Down; C. WHITE and P. ANDERSON, GenBank accession no. U43891); the mean µb = 2.25 x 10-10. The total genome size G = 8 x 107 (SULSTON and BRENNER 1974 Down). There are about 1.78 x 104 genes (BIRD 1995 Down); assuming an average of 103 b per gene gives Ge = 1.78 x 107. Then µg = 8 x 107 x 2.25 x 10-10 = 0.018 and µeg = 1.78 x 107 x 2.25 x 10-10 = 0.0040. These values are posted in Table 5.


 
View this table:
In this window
In a new window

 
Table 5. Mutation rates estimated from specific loci in higher eukaryotes

Drosophila melanogaster: SCHALET 1960 Down detected 51 visible mutations in 490,118 X chromosomes at 13 specific loci, yielding a rate of 8.0 x 10-6 per locus per generation. The fraction of these due to base pair substitutions is unknown; given the evidence that a large fraction of visible mutations in Drosophila are caused by insertions of transposable elements (FINNEGAN and FAWCETT 1986 Down), it is probable that at least half of SCHALET'S mutations were of this nature. MUKAI and COCKERHAM 1977 Down enriched the mutation frequency by accumulating isozyme mutations in 1000 chromosomes sheltered by heterozygosity in a balanced-lethal system for almost 175 generations. In 1,658,308 locus-generations they found three electrophoretic-mobility (band-shift) mutations and 17 null (band-loss) mutations. However, these strains exhibited a high rate of chromosome breakage, probably because of an active transposon (YAMAGUCHI and MUKAI 1974 Down); it is therefore probably more realistic to ignore the nulls, a procedure also justified by the high average ratio of base pair substitutions to other mutations in microbes (DRAKE 1991 Down). MUKAI and COCKERHAM 1977 Down estimated that about 0.3 of all amino acid changes were detectable as band shifts. In addition, only about 2/3 of base pair substitutions change an amino acid. Thus, the mutation rate per locus per generation is = 9.0 x 10-6. Averaging the two studies, we take 8.5 x 10-6 as a representative rate. The proteins studied by MUKAI and COCKERHAM 1977 Down were encoded by an average of 973 b and some regulatory sequences must also have been present, so dividing by 103 gives 8.5 x 10-9 mutations per b per generation. The number of cell divisions ancestral to a sperm in Drosophila is about 25 for the young males typically used in laboratory experiments (LINDSLEY and TOKUYASU 1980; DROST and LEE 1995 Down; J. M. MASON, personal communication), so dividing by 25 gives µb = 3.4 x 10-10. In Drosophila, G {approx} 1.7 x 108 b (ASHBURNER 1989 Down). We will take as Ge the amount of DNA in 1.6 x 104 genes, each of length 103 b (BIRD 1995 Down); this gives Ge = 1.6 x 107 b. These and derivative values are given in Table 5.

Mus musculus: The mouse data come from the controls for the extensive radiation experiments performed at Oak Ridge, Harwell and Neuherberg, and summarized by RUSSELL and RUSSELL 1996 Down. A total of 1,485,036 progeny harbored 69 visible mutations at seven loci for a rate of 6.6 x 10-6 per locus per generation. In addition to the complete mutations, about 4.8 x 10-5 mosaic mutations were detected at five loci; these mutations tended to produce about 50% germ-line mosaicism, so that the adjusted mosaic rate is (4.8 x 10-5) = 4.8 x 10-6. Thus, the total mutation rate was about 1.1 x 10-5 per locus per generation. Assuming 103 b per locus, we obtain 1.1 x 10-8 mutations per b per generation. Finally, dividing by 62, the estimated number of cell divisions prior to a sperm (DROST and LEE 1995 Down), gives µb = 1.8 x 10-10 mutations per b per cell division. Taking G = 2.7 x 109 b (LAIRD 1971 Down) and Ge as the amount of DNA required for 8 x 104 genes (BIRD 1995 Down) of length 103 bp generates the additional values listed in Table 5.

It is surprising that germ-line mosaics were responsible for almost 40% of the total rate. These appear to arise either as mutations that occur in DNA replications directly before or after meiosis in the male parent ("after" denoting the first zygotic replication) or in a single strand of nonreplicating DNA (which might include mutations arising during DNA recombination or repair). Thus, almost as many mutations may occur in or between one or two special DNA replications as occur in the other 60. This possibility presents a major challenge to both experimentalists and theoreticians (WOODRUFF et al. 1997 Down).

The mutation rate of evolutionary importance is of course the average over the two sexes. The estimated rates per generation in male and female mice are not very different, but the female value is based on very small numbers and is complicated by a large cluster. Adding the mosaic rate of 4.8 x 10-6 to the female rate of 1.6 x 10-6 gives a rate of 6.4 x 10-6, about half the male rate. Alternatively, we note that the estimated number of cell divisions prior to the gamete is 25 in females and 62 in males, so the female rate is = 0.40. Averaging these, the female rate is 0.45 of the male rate. The murine male µegs is 0.55, so the average of the two sexes is about 0.4. A similar result obtains in humans (see below).

Homo sapiens: The human data are less reliable than the C. elegans, Drosophila and mouse data. A number of dominant-mutation rates have been inferred from the frequency of affected children of normal parents, and sometimes confirmed by equilibrium estimates for those dominants with severe effects. These values range from 10-4 to 10-6, with a rough average of 10-5 (VOGEL and MOTULSKY 1997 Down). For genes of size 103 b, this corresponds to a rate of 10-8 per b per generation. An estimate based on specific changes in the hemoglobin molecule gave 0.74 x 10-8 per b per generation (VOGEL and MOTULSKY 1997 Down), but this is clearly an underestimate because other kinds of changes are not included. A third, quite independent estimate is based on rates of evolution of pseudogenes in human ancestry, which are likely to be identical to mutation rates (KIMURA 1983A Down). This gives about 2 x 10-8 per b per generation (CROW 1993 Down, CROW 1995 Down). We shall take 10-8 as a representative value. However, because the overwhelming majority of human mutations occur in males (see below), the male rate must be about twice the average rate, or 2 x 10-8. The number of cell divisions prior to sperm formation in a male of age 30 is about 400 (DROST and LEE 1995 Down; VOGEL and MOTULSKY 1997 Down). Thus, µb {approx} 2 x = 5 x 10-11. For 8 x 107 genes (BIRD 1995 Down) of average size 103 b, µeg {approx} 0.004 and µegs {approx} 1.6.

An alternative method for estimating µegs has been proposed by KONDRASHOV and CROW 1993 Down based on the idea that purely neutral sequences such as pseudogenes can be used as a benchmark to identify sites which show clear evidence of selective constraints. If the abundance of such sites can be determined in this way, the effective genome size and its mutation rate can be estimated purely from rates of DNA sequence evolution. This method has yet to be applied to large quantities of sequence data. For hemoglobin genes, about 15% of bases seem to be under the effective control of selection, which may be about average for genes encoding proteins; for a more sophisticated treatment, see KIMURA 1983B Down.

With 6.4 x 109 base pairs in the diploid genome, a mutation rate of 10-8 means that a zygote has 64 new mutations. It is hard to image that so many new deleterious mutations each generation is compatible with life, even with an efficient mechanism for mutation removal. Thus, the great majority of mutations in the noncoding DNA must be neutral.

Effects of sex and age in humans: Data for female mutation rates are less numerous and less reliable than data for male rates. For human base pair substitutions, there is an enormously greater mutation rate in males than in females, along with a strong paternal age effect. Older males have a higher rate than younger males, and the increase is greater than if mutation were simply cell division-dependent (CROW 1993 Down, CROW 1997 Down), but the component of replication fidelity that decreases in older men remains unknown. Mutations also accumulate with cell divisions in somatic tissue (AKIYAMA et al. 1995 Down), although whether the rate is proportional to number of divisions is not known.

The enormous difference in human male and female mutation rates is well documented for those few loci for which there are adequate data. For three conditions, Apert's Syndrome, multiple endocrine neoplasia type B (MEN2B), and type A (MEN2A), a total of 92 new mutations have been reported in which, by linkage analysis, it is possible to determine the parent of origin. Strikingly, all 92 were paternal. These are all base-substitution mutations. Apert's Syndrome has also been studied for paternal age effect and, as expected, shows a large increase with paternal age (CROW 1997 Down). The fact that so many of these mutations are at CpG sites offers some support to those who argue that something associated with methylation is responsible for the high male rate (SAPIENZA 1994 Down; MCVEAN and HURST 1997 Down).

In contrast, some mutations are not strongly associated with paternal age. Two examples are neurofibromatosis and Duchenne muscular dystrophy. In both of these diseases most of the mutations are small deletions and other cytogenetic changes in enormous genes. Thus, the generalization seems to be that base substitutions are replication-dependent but cytogenetic changes are not. Various human diseases show a continuum from very strong paternal age effect to very little (RISCH et al. 1987 Down), presumably reflecting the relative proportions of base substitutions and cytogenetic changes.

Effect of hemizygosity: Deleterious mutations at sex-linked loci are strongly expressed in the hemizygous state in the heterogametic sex and are thus subject to stronger counter-selection than are deleterious mutations in autosomal genes (except when strongly dominant) (HALDANE 1927 Down). As a result, there is stronger selection pressure to reduce mutation rates at X-linked loci than at autosomal loci (MCVEAN and HURST 1997 Down). Data on mammalian DNA sequence evolution suggest that the X chromosome may indeed experience a lower mutation rate than the autosomes (MCVEAN and HURST 1997 Down), although this may be confounded with a higher mutation rate in males than in females, especially in long-lived mammals.

Mutational hot spotting: Some of the best understood human mutations arise in the gene for achondroplasia, which would seem to be a good source for a mutation rate estimate. The average mutation rate for the phenotype, determined directly in several studies and substantiated by indirect calculations, is 10-5 (VOGEL and MOTULSKY 1997 Down). However, molecular analysis (SHIANG et al. 1994 Down) revealed that 15 of 16 mutations were GGG -> AGG and the other was GGG -> CGG at the same codon, replacing glycine with arginine. Thus, the entire observed mutation rate appears to come from one codon. Similar CpG hotspots were responsible for all the mutations causing Apert's Syndrome. Although the data are scanty, these two examples suggest that a major fraction of human gene mutations is due to mutational hot spots, as is also typical in microbes (e.g., BENZER 1961 Down). We badly need more data on per-locus mutation rates accompanied by molecular analyses showing the mutant sites and the parent of origin.

Somatic versus germinal mutation rates: The (mammalian male) germ-line rate may be lower than the somatic rate. Using mice bearing a chromosomal mutation-reporter target, the typical somatic-cell mutant frequency was found to be about 1.7 x 10-5 in a variety of tissues, but about 0.6 x 10-5 in sperm preparations (KOHLER et al. 1991 Down). (This three-fold difference is probably an underestimate, because the germ-cell preparations used in these experiments were probably contaminated with somatic cells.) Because the number of cell divisions antecedent to these tissues was not notably lower in germ cells than in somatic cells, this result suggests a mutation rate per cell division (or unit of time) at least three times lower in germ cells than in somatic cells. In turn, this conclusion suggests that evolutionary pressures on mutation rates focus primarily upon the germ line with the soma being subject to less pressure, perhaps because of diploidy (ORR 1995 Down).

Mutation rates for deleterious alleles from mutation-accumulation experiments:
Measurements of mutation rates based on specific loci offer the potential of scoring all mutational events in a molecularly well defined target. This has been achieved in several microbial systems, but as yet only imperfectly in higher eukaryotes. A disadvantage of the specific-locus method is that only one or a few, possibly unrepresentative, genes may have been examined. An alternative approach is to accumulate mutations with deleterious fitness effects over many generations. While this method ignores mutations without effects on fitness, it can screen rather large fractions of the genome. Mutations with very small fitness effects (of the order of 10-3 or less) are not likely to contribute to mutation-rate estimates obtained in this way, unless they are improbably numerous; we therefore distinguish these estimates conceptually from the mutation rates per effective genome discussed above. Given that the specific-locus results for higher organisms depend largely on the detection of mutations with major phenotypic effects, the above estimates of the effective genome mutation rates should in practice be quite similar to the deleterious mutation rate estimates.

Mutation-accumulation methods: This procedure combines MULLER's (1928) use of marked crossover-suppressing chromosomes to detect mutations anywhere along a chromosome that has been sequestered for several generations, and BATEMAN's (1959) proposal to use the variance between replicates to estimate the mutation rate and average effect. The approach was refined by MUKAI and co-workers (MUKAI 1964 Down; MUKAI et al. 1972 Down), and we shall refer to it as the Bateman-Muller-Mukai method.

The basic idea is as follows. A set of initially genetically identical lines is established from an isogenic base. The lines are maintained independently and mutations are allowed to accumulate. Because the mating system assures that the mutation-accumulating chromosomes reside only in heterozygous males and a single male is used as the parent in each generation, selection is minimized. Assuming that the number of mutations per line after some number of generations is a random variable, different lines will accumulate different numbers of mutations. Thus, the variance among lines for a quantitative fitness trait such as viability will increase over time. Given the deleterious nature of most mutations, the mean value of the fitness trait is expected to decline with time. Let the mean number of deleterious mutations that arise per generation be U (Uc for the rate for a particular chromosome, Uh for the haploid genomic rate, Ud for the diploid genomic rate), and the mean reduction in trait value of a single mutation when homozygous (relative to a value of 1 for wild-type) be . ( is a weighted mean, in which the effects of mutations at individual loci are weighted by the mutation rates at the loci.) If mutational effects are additive across loci, the rates of decline in overall mean fitness ({Delta}M) and increase in variance among the lines ({Delta}V ) are given by

(1a)
and

(1b)
where Vs is the variance among sites in the effects of mutations (again with a weighting by the mutation rates). These yield the expressions

(2a)
and

(2b)

These are equalities only if all mutations have equal effects on the trait. However, given reliable estimates of the decline in mean and increase in variance, a useful lower bound on the deleterious mutation rate per genome can be obtained from Expression 2a. The true values of the parameters may differ greatly from these bounds. For example, if the mutation effects have an exponential distribution, then the estimate of Uc is doubled and that of is halved (CROW and SIMMONS 1983 Down). Under specific assumptions concerning the shape of the distribution of mutational effects, such as a gamma distribution, maximum likelihood methods can be used to estimate the parameters of the distribution and the value of Uc (KEIGHTLEY 1994 Down, KEIGHTLEY 1996 Down). In principle, these methods should provide more accurate estimates of U, and Vs than the simpler methods of MUKAI et al. 1972 Down provided that the assumptions of the statistical model are met.

There are two difficulties in applying this method of estimating U in species other than Drosophila. The first is the problem of preventing the operation of selection, which obviously opposes the accumulation of deleterious mutations. This can be fairly easily achieved by maintaining each line with minimal effective population sizes, because a mutation is effectively neutral when the product of effective population size and selection coefficient is less than one (FISHER 1930 Down). In clonal or selfing organisms, propagation of each line through a single individual each generation ensures that even highly deleterious mutations will behave like neutral alleles (KEIGHTLEY and CABALLERO 1997 Down). Even for diploids with separate sexes, only strongly deleterious alleles will be efficiently eliminated by selection, because an effective population size of two for each line is possible with full-sib mating. Such experiments therefore provide estimates of the rate of mutation to most detrimental alleles, i.e., mutations that reduce fitness by less than about 50% when homozygous.

The main difficulty with this method is that lines accumulating large numbers of mutations become increasingly vulnerable to loss due to low fitness, introducing a downward bias in both {Delta}M and {Delta}V. In D. melanogaster, the use of marked balancer chromosomes means that mutations can accumulate on a single autosome that is propagated through a single heterozygous male in each line (MUKAI 1964 Down); then the effective population size is one-half. Given the considerable recessivity of most strongly deleterious mutations (CROW and SIMMONS 1983 Down), the risk of loss of a line is greatly reduced by this procedure; in fact, in MUKAI's experiments only a very small fraction of the singly-mated males were sterile, and those cultures were replaced by sibs so that no lines were lost (MUKAI et al. 1972 Down). The chromosomes accumulating mutations can be made homozygous when desired, and their effects on fitness components assayed.

The mutation rate for recessive lethals can also be estimated by the balancer chromosome technique, and is about 0.01 per haploid genome per generation in D. melanogaster (CROW and SIMMONS 1983 Down). This seems to be only a small fraction of the total mutation rate to deleterious alleles (see Table 6). More limited information on C. elegans suggests a slightly lower lethal mutation rate of about 0.007 per haploid genome per generation (ROSENBLUTH et al. 1983 Down; CLARK et al. 1988 Down). However, the upper 95% confidence interval for this estimate overlaps the Drosophila value. In plants, direct estimates can be obtained for nuclear mutations to chlorophyll deficiency (albino and yellow seedlings). These are only a component of all lethal mutations, and so provide an underestimate of the mutation rate to lethal alleles (KLEKOWSKI 1988 Down). There is also some information from ferns, in which newly arisen lethals affecting the haploid stage can be detected by testing for inviable spores from individual diploid sporophytes (which must necessarily derive from haploids free from lethals in the previous generation). KLEKOWSKI 1973 Down found rates of about 0.01 to 0.015 per haploid genome for three fern species, values remarkably similar to the C. elegans and Drosophila estimates.


 
View this table:
In this window
In a new window

 
Table 6. Mutation rates to detrimental alleles from mutation-accumulation experiments

A more serious problem concerns the proper control for the estimation of {Delta}M, because fitness components are notoriously sensitive to environmental effects (HOULE 1992 Down). Thus, mutation-accumulation lines should ideally be measured at the same time as a control that has not had the opportunity to accumulate mutations. An isogenic stock that initially has the same genetic composition as the mutation-accumulation lines does not provide a suitable control, even if it is maintained as a random-bred stock with large effective population size as in some experiments (FERNANDEZ and LOPEZ-FANJUL 1996 Down). This is because most deleterious mutations have only small effects on fitness when heterozygous, and thus can persist in the population for many generations before elimination (CROW and SIMMONS 1983 Down). The rate of decline in mean fitness of an initially isogenic population as new mutations appear will at first be nearly the same as for the accumulation lines, and will only approach zero after several tens of generations.

This problem of a suitable control can be overcome with organisms that can recover well from freezing, such as E. coli and C. elegans ; suitable methods have become available only recently for Drosophila (STEPKONKUS and CALDWELL 1993). MUKAI and co-workers (MUKAI 1964 Down; MUKAI et al. 1972 Down) and OHNISHI 1977 Down either used no control or used values from the lines that were presumed to be mutation-free because they retained maximal fitness. These procedures have led to criticism of the values from these experiments (KEIGHTLEY 1996 Down).

The magnitude of U: Estimates of minimum (Bateman-Muller-Mukai) detrimental mutation rates from mutation-accumulation experiments in several species are summarized in Table 6. As expected from Table 4, the lower bound for U in E. coli is extremely small, about 6% of the total genomic mutation rate of 0.0034. If the estimated number of cell divisions (36) in the male germ line of Drosophila is multiplied by the E. coli U of 0.0002, the resulting Drosophila Uh = 0.007. This is much less than the measured estimate of about 0.3. This ratio (0.007:0.3) is roughly the same as the ratio of E. coli and Drosophila genome sizes (KIBOTA and LYNCH 1996 Down). In Drosophila, however, the ratio of the effective genome size to the total genome size (Ge:G) is much smaller than in E. coli. If only the ratio of effective genome sizes is considered, a large discrepancy remains. In contrast to the MUKAI estimates of Uh for Drosophila of 0.15 (OHNISHI 1977 Down) to 0.42 (MUKAI et al. 1972 Down), Uh for C. elegans was estimated to be 0.003 using the fit to a gamma distribution of mutational effects, or 0.0006 using the MUKAI method (KEIGHTLEY and CABALLERO 1997 Down). Because the genome sizes of C. elegans and Drosophila are similar, an estimated two orders of magnitude difference in Uh is disturbing. On the other hand, the estimate for Arabidopsis thaliana (0.1) appears to be only slightly lower than for Drosophila, but the confidence intervals on this estimate are very wide (S. SCHULTZ and J. H. WILLIS, personal communication).

Several possible explanations can be imagined for these discrepancies. One is that the Drosophila estimates are based on measurements of egg-to-adult viability under competitive conditions, whereas the C. elegans and Arabidopsis results were for net reproductive output under noncompetitive conditions; differences in fitness are likely to to be more easily detected under harsher conditions (KONDRASHOV and HOULE 1994 Down). Another possibility is that transposable element insertions played a much larger role in causing deleterious mutations in the Drosophila experiments than in the C. elegans experiments, where the line involved lacked transposable element activity (KEIGHTLEY and CABALLERO 1997 Down). A less palatable explanation is that the Drosophila values for {Delta}M are gross overestimates caused by adaptive changes in the balancer chromosome against which the mutation-accumulation chromosomes were competed; this would cause an artifactual decline in the mean viability of the mutation-accumulation chromosomes relative to the balancer (KEIGHTLEY 1996 Down). However, this artifact seems unlikely because the balancer chromosomes were long-established laboratory strains that were likely to be at equilibrium, and in the longest accumulation experiments (MUKAI 1969 Down), the viability of the balancer chromosomes would have had to double to account for the observed results. The fact that the (probably minimal) effective genomic mutation rate in Drosophila in Table 5 is far closer to the U estimates in Table 6 for Drosophila than for C. elegans further suggests that this putative artefact is improbable.

To avoid the problems of the control for the Drosophila experiments, GARCIA-DORADO 1997 Down used a statistical method for estimating mutational parameters which does not require knowledge of {Delta}M, but simply fits the observed distribution of mutation-accumulation line values to an assumed form of continuous distribution of mutational effects. This leads to a much smaller estimate of U for the MUKAI and OHNISHI experiments (Uh {approx} 0.025) than does the Bateman-Muller-Mukai method, although still substantially larger than the C. elegans value. The difficulty with this result is that there is no a priori justification for the assumed distribution of mutational effects; for example, there could be one class of mutations with similar but fairly large effects, and another class with much smaller but highly variable effects, as suggested by KEIGHTLEY 1996 Down. This could have substantial effects on the estimate of U. Further research is clearly needed to resolve these uncertainties.

A method that offers a partial solution to the inadequate Drosophila controls has been devised by S. A. SHABALINA, L. Y. YAMPOLSKY and A. KONDRASHOV (personal communication). A large, randomly bred stock is maintained so as to minimize the opportunity for selection on viability and fertility. If this is the case, the mean value of a fitness component should decline at the rate given by Equation 1a, where Uc is replaced by Ud and the selection coefficients are for heterozygotes rather than homozygotes. If a comparable randomly bred stock is maintained under selective conditions that have prevailed for a long time, so that it is at mutation-selection equilibrium, its mean should remain constant except for environmental fluctuations, so that {Delta}M can be estimated by adjusting for changes in the control. To avoid the possibility of adaptive change in the control stock, the number of generations over which it is maintained may be minimized by keeping it at a low temperature to reduce the number of control generations or using recently developed methods for freezing Drosophila. Their measurements of net fitness under competitive conditions suggested that {Delta}M {approx} 0.02. For MUKAI et al. 1972 Down the value was 0.004 per chromosome, which translates into 0.02 per diploid genome. These values are in good agreement, but this is perhaps due to opposing errors. The data of SHABALINA et al. are for fertility. There is evidence for a more important contribution from fertility than viability to the genetic load for total fitness (KNIGHT and ROBERTSON 1957 Down; SVED 1975 Down; SIMMONS et al. 1978 Down). On the other hand, they measured heterozygous rather than homozygous effects. In any case, the experiments of SHABALINA et al. support a substantial decline in fitness under circumstances where the control strain had been kept frozen, thus arguing against improvement of the reference population in the MUKAI experiments.

Indirect estimates of U :
Several indirect methods have been proposed for estimating the genomic deleterious mutation rate. For lethal mutations in outcrossing plants, the classical formula for the equilibrium frequency q of a recessive-lethal allele under mutation-selection balance, q {approx} ()0.5 (HALDANE 1927 Down), can be applied to the frequencies of nuclear gene-controlled chlorophyll-deficient variants to obtain the mutation rate µ per haploid genome, assuming that the selection coefficient s = 1 (CRUMPACKER 1967 Down; OHNISHI 1982 Down; KLEKOWSKI 1988 Down). If lethal mutations are not completely recessive, as is suggested by the Drosophila data (CROW and SIMMONS 1983 Down), this procedure underestimates the mutation rate because a higher value of µ is needed to compensate for the elimination of heterozygous lethals by selection.

The results for total mutation rates to chlorophyll deficiency were reviewed by KLEKOWSKI 1992 Down for ten species of annual plants from five families. He concluded that rates are surprisingly constant, ranging from (0.16–0.45) x 10-3. There is no apparent relation to the species' DNA content, even though this differed more than 20-fold. The differences in Ge are presumably much less. It is difficult to extrapolate these mutation rates to the whole genome, because the proportion of vital loci contributed by chlorophyll genes is presently unknown.

Estimates can also be obtained for populations whose selfing rates are known, using the equilibrium formulae of OHTA and COCKERHAM 1974 Down. Estimates for such populations of long-lived mangrove species are (2.1–5.8) x 10-3 (KLEKOWSKI and GODFREY 1989 Down; KLEKOWSKI et al. 1994 Down), about 13-fold higher than those from annuals. This difference would be expected from an increase in mutation rates with age caused by greater numbers of cell divisions before meiosis in old plants; note that in plants, reproductive structures are formed from vegetative tissues, and are not derived from a germ line (KLEKOWSKI 1988 Down). This value needs confirmation in other species. Assuming that mutations affecting sporophyte viability also lower male gametophyte viability, an age effect should also decrease pollen viability in old plants. No such effect was found in the one study of which we are aware (CONNOR and LANNER 1991 Down). However, by analogy with human studies, mutations that accumulate with age are likely to be mainly base substitutions, which are more likely than deletions to pass through the haploid gametophyte (KHUSH and RICK 1967 Down).

The use of formulae based on the assumption of mutation-selection equilibria has been extended to estimating detrimental mutation rates from the effect of inbreeding on fitness components (CHARLESWORTH et al. 1990 Down; CHARLESWORTH and HUGHES 1998 Down; DENG and LYNCH 1996 Down). In highly selfing species, recessive lethals will be quickly purged from the population (LANDE and SCHEMSKE 1985 Down), and will thus contribute little to the different effects of inbreeding versus outbreeding on fitness components. In addition, such populations will have few polymorphic loci with allelic variability maintained by overdominance (KIMURA and OHTA 1971 Down; CHARLESWORTH and CHARLESWORTH 1995 Down). Thus, we can reasonably neglect lethal and segregational loads and assume that heterosis in highly inbred populations is due solely to detrimental mutational load. The rate for independently acting detrimental mutations per diploid genome can then be estimated from the formula

(3)
where {delta} is the reduction in mean fitness of highly selfed individuals compared with randomly mated individuals, and h is the dominance coefficient associated with a typical detrimental mutation. This method provides underestimates of total mutation rates for reasonable values of h (CHARLESWORTH et al. 1990 Down).

The range of values of Uh so obtained from data on heterosis in net fitness for several species of highly selfing plants from three families of angiosperms are shown in the top part of Table 7; where no estimate of h is available, it was assumed to be 0.2 as suggested by the Drosophila data (CROW and SIMMONS 1983 Down; CHARLESWORTH and HUGHES 1998 Down). Because each individual estimate is subject to considerable sampling error, it is probably wise to treat only the median value of approximately 0.3 as meaningful. This estimate is ostensibly independent of the strength of selection against the deleterious mutations, and so may capture a larger fraction of them than the mutation-accumulation method. On the other hand, the fact that h seems to be much closer to 0.5 for mutations with small effects than for mutations with drastic effects (CROW and SIMMONS 1983 Down) means that very weakly selected mutations are likely to contribute relatively little to heterosis and so would not be detected by this method.


 
View this table:
In this window
In a new window

 
Table 7. Indirect estimates of the detrimental mutation rate

HUGHES 1995 Down and DENG and LYNCH 1996 Down, DENG and LYNCH 1997 Down have suggested an extension of this approach to use the genetic variances of inbred and outbred populations to estimate the decrease in fitness components with inbreeding. By simultaneously estimating the degree of inbreeding depression, U and can also be estimated (DENG and LYNCH 1996 Down, DENG and LYNCH 1997 Down). Estimates of Uh applying this method to published data on Drosophila fitness components (B. CHARLESWORTH, unpublished results) and from data on Daphnia (DENG and LYNCH 1997 Down) are given in the lower part of Table 7. There is again substantial spread in the individual estimates; the median is approximately 0.34, surprisingly close to the plant value.

While an attractive idea, this method depends heavily on the assumption that mutation-selection balance is the sole force maintaining genetic variation in fitness components. There are good reasons to question this assumption for outbreeding species. In Drosophila, both the genetic variance and inbreeding depression for components of fitness seem to be too high to be explained solely by mutation-selection balance, using the parameter estimates shown in Table 6 (MUKAI et al. 1974 Down; CHARLESWORTH and HUGHES 1998 Down). This implies the existence of a substantial contribution from variation which is actively maintained by selection, causing an upward bias in estimates of U by the Deng-Lynch method. The presence of variation maintained by selection means that U is overestimated to an extent which is difficult to gauge.

The impact of increased rates of mutation:
Does the high rate of spontaneous deleterious mutation per sexual generation in multicellular organisms render them sensitive to small rate increases, as seen with RNA viruses, retroelements, and mutator strains of E. coli and S. cerevisiae ? We would expect both diploidy, and the infrequent demand for the functions of some genes that mediate responses to environmental challenges, to provide considerable protection from recessive lethal mutations, at least until mutations accumulate to an intolerable frequency. But detrimental mutations seem to have higher levels of dominance than lethals (CROW and SIMMONS 1983 Down), so that a high genomic mutation rate to detrimentals could imperil an outbred population.

In the 1950s, WALLACE 1952 Down, WALLACE 1956 Down exposed caged Drosophila populations to continuous radiation accumulating to 250,000 r. The population accumulated a large number of recessive lethals, but its size was not reduced. This is perhaps not surprising in a species with a high reproductive potential. Nevertheless, although heavily mutagenized Drosophila populations showed no overt signs of genetic deterioration, they became weak competitors with nonmutagenized strains (WIJSMAN 1984 Down). Thus, WALLACE's flies were indeed paying a price, but one that would have required a more rigorous environment to reveal.

Recent results with mammals are instructive. Several strains of mice have been rendered homozygous for defects in the mismatch repair genes Msh2 (DE WIND et al. 1995 Down; REITMAIR et al. 1995 Down), Pms2 (BAKER et al. 1995 Down) or Mlh1 (BAKER et al. 1996 Down; EDELMANN et al. 1996 Down). These mice display a mutator phenotype in somatic cells, the mutability of microsatellite sequences being increased by roughly 102-fold. In the case of Pms2, the somatic mutability of an artificial mutational target in a shuttle vector increased about 100-fold throughout the gene (NARAYANAN et al. 1997 Down); most of the mutations were ±1 b, that is, frameshifts that are likely to be null mutations. Most of these mutator mice are superficially healthy, although cancer-prone. Most are sterile, apparently for reasons more mechanical than mutational, but Pms2-/- females are fertile. In humans, samples of normal tissue from several cancer patients were defective in hPMS2 or hMLH1 (the human homologs of murine Pms2 and Mlh1, respectively; see PARSONS et al. 1995 Down), suggesting that mutator humans occur naturally and have properties similar to those of mutator mice. These results suggest, as mentioned above, weaker selection against somatic than against germinal mutations.

Thus, substantially increased somatic mutation rates appear to be compatible with mammalian development. However, a persistently high germline mutation rate would be expected to extinguish the population within a few generations; one can easily imagine mouse breeding schemes that could explore the effects of mutation accumulation under highly mutagenic conditions.

Aging is an important aspect of mammalian development. Aging has long been conjectured to reflect the accumulation of somatic mutations (see FINCH 1990 Down). The lack of obviously accelerated aging in mice with 100-fold increased somatic mutation rates considerably weakens this hypothesis.


*  THE EVOLUTION OF MUTATION RATES
*TOP
*ABSTRACT
*THE MAGNITUDES OF MUTATION...
*THE EVOLUTION OF MUTATION...
*LITERATURE CITED

Discernible patterns:
Rates of spontaneous mutation display several distinct patterns across taxa. RNA-based organisms have the highest genomic rate per genome replication, µg {approx} 1–2 for lytic RNA viruses and µg {approx} 0.1–0.2 for retroviruses and a retrotransposon exclusive of their tenure as parts of host chromosomes. For DNA-based microbes, µg = 0.0034 = . For higher eukaryotes, the mutation rate is properly expressed per effective genome, which includes only those parts of the genome in which most mutations produce deleterious effects upon which selection can act effectively; based on rather incomplete information, µeg {approx} 0.006 (range 0.004–0.014), these values presently being indistinguishable from 0.003. The corresponding mutation rate per effective genome per sexual generation (µegs) varies by at least 40-fold (0.036–1.6), and the mutation rate per total higher eukaryotic genome must considerably exceed 1 in some cases. The lower bound estimates of rates of deleterious mutation per genome per sexual generation (Uh) are about 0.1–0.35 for Arabidopsis and Drosophila, and Ud therefore approaches or somewhat exceeds 1 for these organisms; it may be lower for C. elegans. As we have discussed, these estimates need to be viewed with caution, and may be substantially revised in the future.

Miscellaneous puzzles and rejoinders:
Why do the lytic RNA viruses put up with rates of spontaneous mutation so high as to genetically degrade a substantial fraction of their progeny? One speculation has been that these high rates facilitate escape from immune surveillance and other host defenses. This speculation is faulted by the observation that the RNA-based bacteriophage Qß and its DNA-based counterpart bacteriophage M13, both infecting E. coli and displaying similar life histories, nevertheless retain the mutation rate characteristic of their class. Another speculation has been that the replication of RNA viruses cannot be more accurate because their replicases lack a proofreading function. However, the retroviruses also lack such a function, but nevertheless achieve a replication accuracy that results in far fewer defective progeny. One general, simple way to increase accuracy would be to decrease the ability of the polymerase to extend from a mismatch, thus aborting mutant progeny. Another, more radical way would be to appropriate a DNA proofreading activity and adapt it to RNA substrates, although this would involve enlarging the genome size and thus increasing the chemical lability of the genome. Yet another speculation is that the benefits from replicating as rapidly as possible outweigh the costs of a high error rate. However, this problem could be solved, as it already has in both prokaryotes and eukaryotes, by employing multiple sites of replication initiation. A final speculation is thus far unfaulted: the retroviral mutation rate is determined primarily by the error rate of transcription, on which the virus cannot improve.

Another characteristic of the RNA viruses, and to a lesser extent the retroviruses, is their extraordinary fecundity. Yields per infected cell of 103 to 104 iu (and perhaps tenfold more physical particles) are common. Thus, there is a substantial probability that an infected cell will release numerous particles that are free of deleterious mutations. A general property of these viruses that may also bear on their mutation rate is the inherent chemical lability of the RNA backbone, which appears to limit RNA virus genomes to <40,000 b. Thus, larger genomes do not persist and therefore cannot experience more intense selection for reduced µb.

Recombination provides a mechanism that may allow a heavily mutagenized population to randomly generate more fit genomes (PRESSING and REANNEY 1984 Down; NEE 1987 Down). The genome of influenza virus is extensively subdivided and recombines freely, whereas recombination in poliovirus is rare. However, the two viruses have indistinguishable mutation rates, so that recombination rate appears not to be a determinant of mutation rates in this case. Rates of recombination among DNA-based microbes also vary greatly, and thus do not seem to be important in maintaining the strongly invariant µg observed in these organisms.

Two deep differences within and across taxa deserve emphasis here. First, selection on mutation rates must operate differently in organisms with rare or no sex (or with full selfing) than in those sexual organisms with frequent outcrossing, because the products of mutation remain coupled to the rate determinants in the former case but are rapidly decoupled in the latter. Second, two quite different mutation rates operate in multicellular organisms: germline rates and somatic rates. We noted that the murine male germline rate appears to be lower than the somatic rate, suggesting that these two rates evolved somewhat differently. In addition, the remarkable lack of immediate phenotypic consequences of mutator mutations in mice and men (except for higher cancer rates) suggests that in the soma, the buffering provided by diploidy protects strongly against the consequences of mutations (ORR 1995 Down).

Evolutionary forces shaping mutation rates:
The different patterns of mutation rates among taxa indicate clearly that the rate of mutation is subject to evolutionary change. Because the fidelity of DNA replication depends on elaborate enzymatic machinery, mutational inactivation of any component of which can greatly elevate the mutation rate, selection acts primarily to reduce the standard mutation rate, although allowing higher rates in specific circumstances. Such selection pressure was first posited by STURTEVANT 1937 Down, who observed that the vast majority of spontaneous mutations decrease rather than increase fitness. He suggested that the pressure of deleterious mutations would favor selection of genetic modifiers that reduce the mutation rate and thereby reduce the genetic load of deleterious alleles maintained in the population by mutation-selection balance. This led him to ask why the mutation rate does not fall to zero. Some 30 years later, KIMURA 1967 Down suggested that the cost of continually reducing mutation rates would eventually be balanced by what he called the "physiological cost" of doing so.

Selection for modifiers of mutation rates: More generally, we may now inquire what evolutionary factors determine the mutation rate of a species. While we cannot pretend that this question can yet be fully answered, the main ingredients of an answer are now reasonably clear. A well developed body of theory predicts the effect of selection on a modifier gene that causes a small reduction in the genomic mutation rate to deleterious alleles (Uh or Ud in the terminology introduced above), both for freely recombining sexual populations and for completely asexual populations (KONDRASHOV 1988 Down, KONDRASHOV 1995 Down). This reduction comes about because a modifier allele causing a reduction in the mutation rate becomes associated in the population with genomes that have a lower-than-average number of deleterious mutations. In the case of a freely recombining diploid species, the selection coefficient on a modifier which reduces the diploid mutation rate by {delta}U is approximately {delta}U, where is the mean selection coefficient against a heterozygous deleterious mutation. In a diploid asexual species, the selection coefficient is approximately {delta}U. In a completely selfing population, the value is 0.5 {delta}U, provided that deleterious mutations are not completely recessive. These results assume that the populations in questions are close to deterministic equilibrium under mutation and selection, and so do not take into account the presumably numerous class of deleterious mutations whose effects on fitness are of the order of the reciprocal of the effective population size. To take this class of mutations into account, further studies are needed of the dynamics of selection on mutation rate modifiers.

The intuitive reason for this effect of breeding system is as follows. In an asexual or selfing population, the complete linkage of a mutation-rate modifier to its targets means that the selection pressure on the modifier is determined by the difference between the equilibrium mean fitness of clones containing the modifier allele and of clones carrying its rival allele (LEIGH 1970 Down, LEIGH 1973 Down). The equilibrium mean fitness of a diploid asexual population subject to deleterious mutation at a rate Ud is e-Ud (HALDANE 1937 Down; KIMURA and MARUYAMA 1966 Down); thus, the difference in mean fitness between populations carrying the modifier and rival populations is expected to equilibrate at e-(Ud-{delta}Ud) - e-Ud {approx} {delta}Ud. With free recombination, on the other hand, a neutral allele remains associated with a mutation that has occurred in the same gamete as itself for an average of only two generations, so that the apparent fitness reduction to the allele due to its initial association with the mutation is 2 (KIMURA 1967 Down). If a mutation-rate modifier reduces the diploid genomic mutation rate by {delta}Ud, the modifier thus gains an advantage over the rest of the population of approximately {delta}Ud (KIMURA 1967 Down; KONDRASHOV 1995 Down), because only half of the mutations will occur in the same haploid genome as the modifier allele.

It is relatively easy to extend these arguments to include a direct fitness cost to a reduction in the mutation rate. Such a cost prevents the mutation rate from being reduced to zero, for instance because of the energetic costs of diverting cellular resources to proofreading mechanisms (KIMURA 1967 Down; KONDRASHOV 1988 Down, KONDRASHOV 1995 Down). If such fidelity costs are included in the equations, one can determine the evolutionary equilibrium mutation rate; at this rate, alleles modifying the mutation rate in either direction are neutral or disadvantageous (KONDRASHOV 1995 Down; MCVEAN and HURST 1997 Down). While there is experimental evidence for the existence of such costs (KIRKWOOD et al. 1986 Down), there is little direct evidence that U is in fact determined in this way. The paucity of evidence in microbes for mutant alleles with clear-cut antimutator effects suggests that mutation rates are in fact near the physico-chemical minimum that can be achieved at an acceptable cost. The increased resistance to radiation damage in Drosophila laboratory populations that have been exposed to radiation for a long time (NOTHEL 1987 Down) is one of the few pieces of evidence that might argue the contrary, but even here the spontaneous mutation rate did not seem to be affected. The existence of Drosophila strains with rates of recessive-lethal mutations that differ by 14-fold (WOODRUFF et al. 1984 Down) shows that not all mutate at the minimum average rate, although the higher Drosophila rates may merely reflect the transitory impact of a transposon infection.

The effect of selection pressure is thus primarily to reduce the genomic mutation rate. The strength of selection on a modifier with a given effect on the mutation rate per base is likely to be proportional to the size of the portion of the genome that produces deleterious mutations, because the same percentage effect of an antimutator gene on the mutation rate per b produces a bigger change in U in larger genomes. {delta}U is thus likely to be proportional to U if the rate of mutation per base is the appropriate scale for measuring effects of mutator genes. If the cost of a given level of reduction in the mutation rate per b is independent of genome size, evolution should result in a rough equality of deleterious mutation rates per genome across species with comparable breeding systems. Such equality is not well supported by the data on RNA viruses in Table 2 and Table 3, where the retroviruses have tenfold lower mutation rates per genome generation than the lytic viruses, but is reasonably consistent with the data in Table 4 on DNA-based microbes. The data in Table 5 on higher eukaryotes show fair agreement in the mutation rate per effective genome per replication, but not for the rate per generation as predicted theoretically, with C. elegans being especially diverged from the others (see also Ta-ble 6).

A possible explanation for different U values in different taxa is that the cost of fidelity may vary with life history or genome size. The total energetic cost of a given change in fidelity per base per generation is likely be greater in species with larger effective genome sizes or more germ-line cell divisions per generation, so that a complete equality of deleterious mutation rates per genome is unlikely to be achieved. The fact that humans appear to have the highest rate of mutation per effective genome per generation (µegs in Table 5) could be explained by either or both of these effects, among other possibilities.

Sexual versus asexual species: There is clearly much stronger selection in favor of reducing the mutation rate in asexual or selfing organisms than in sexual species. Data from Drosophila suggest that is of the order of 0.01–0.02 (CROW and SIMMONS 1983 Down; CHARLESWORTH and HUGHES 1998 Down), so that that the difference can easily be as high as two orders of magnitude. If the only factors controlling the fate of modifiers that reduce mutation rates are the fitness advantage of a reduction in mutational load and the cost of increased fidelity of replication, then one might expect to see a much higher mutation rate per genome in sexual compared with asexual or self-fertilizing taxa, after correcting for any differences in effective genome size. But a variety of factors lead asexual or selfing populations to have short evolutionary persistence times (KONDRASHOV 1993 Down), so that there may not be enough time for them to evolve lower mutation rates. The low mutation rate per effective genome per generation in C. elegans (Table 5) may reflect the high degree of self-fertilization in this species. The fact that effective mutation rates in different species of bacteria and lower eukaryotes are similar (Table 4), despite wide variations in genome size and mode of reproduction, suggest either that differences in breeding system do not in fact matter very much, or that there is enough recombination in ostensibly asexual organisms such as bacteria (MAYNARD SMITH 1991 Down) that the differences in breeding system are more apparent than real. If the latter is the case, then the much higher effective mutation rates in higher eukaryotes (Table 5) can only be explained in the present model by a greatly increased cost of fidelity of replication per generation. Unfortunately, quantitative data on this cost are completely lacking, so that this conclusion remains speculative.

In an asexual species, deleterious genes are eliminated from the population in the same genotypes in which they occur. If mutations occur independently, they are eliminated independently. In a sexual species, deleterious mutations are regrouped every generation, so that it is possible in principle for mutations to be eliminated in groups. Is there a Maxwell's Demon who ensures that each "genetic death" picks off several mutations? Directional epistasis or quasi-truncation selection can have such an effect (CROW 1997 Down), but how effective this is in natural populations is an open question. It is possible that a mutation rate that would lead to extinction in an asexual species would be tolerated in a sexual one.

Adaptive mutations: It has often been suggested that higher mutation rates would be adaptive in populations undergoing strong directional selection, because mutational variability would enhance the speed of response to such a selection pressure. STURTEVANT in fact raised this possibility in 1937, only to dismiss it with the phrase, "While this effect may occur, it is difficult to imagine its operation." Undeterred, KIMURA 1960 Down, KIMURA 1967 Down developed a theory of selection on the mutation rate, according to which the genetic load experienced by a population from the joint effects of deleterious mutations and the substitution of alleles due to selection in a changing environment is assumed to be minimized by selection on the mutation rate. He showed that the optimal effective genomic mutation rate according to this criterion is equal to the rate of substitution of favorable alleles in the genome as a whole (KIMURA 1967 Down). The weakness of this theory for sexually reproducing organisms is that it implicitly assumes the operation of group rather than individual selection, with all the attendant difficulties (LEIGH 1970 Down, LEIGH 1973 Down).

The analysis of models of selection on genes that modify the mutation rate has allowed progress on this problem. As we have seen for the case of mutations with purely deleterious effects, recombination in a sexual species greatly weakens the force of selection on a mutation-rate modifier. This problem is more acute for the case of favorable mutations, because these are likely to be much rarer than deleterious mutations. A modifier allele that increases the mutation rate may thus receive a short-lived boost in frequency from its association with a favored allele that it has induced, but soon loses this advantage as a result of recombination (KIMURA 1967 Down; LEIGH 1970 Down, LEIGH 1973 Down). The pressure of selection for an increased mutation rate from the induction of favorable mutations is thus extremely weak in a sexually reproducing organism, and is likely to be overwhelmed by the disadvantage of deleterious mutations.

The situation is somewhat different in species with low levels of recombination, such as many bacteria, because a modifier can remain associated with a mutation that it has induced. In the absence of recombination, KIMURA's results apply to the process of selection on favorable mutations (LEIGH 1970 Down, LEIGH 1973 Down). Populations that have experienced a severe challenge from a novel environment might therefore be expected to show an increased frequency of mutator alleles (TADDEI et al. 1997 Down). Several experiments with bacterial populations support this conclusion, and the genetic basis of the increased mutation rate has been identified in some cases (SNIEGOWSKI et al. 1997 Down). This is consistent with the observation cited earlier that some natural isolates of bacteria harbor mutator genes. A mutator allele still faces a long-term problem because it causes a higher load of deleterious alleles, so that once adaptation to the new environment has occurred, selection for a reduction in the mutation rate will be renewed. A mutator strain of bacteria has been observed to evolve a lower mutation rate when grown in a chemostat for over 2,000 generations (TROBNER and PIECHOCKI 1984 Down), presumably as a result of selection of this kind.

One special circumstance in which a high mutation rate is favored is when an organism is confronted with a rapidly cycling or otherwise continually changing environment, so that it pays to be able to respond by producing novel genotypes at loci which are responsible for adaptation to the new state of the environment (GILLESPIE 1981A Down; ISHII et al. 1989 Down). Polymorphisms maintained by selection in a constant environment can also induce selection for increased mutation rates (GILLESPIE 1981B Down; KONDRASHOV 1995 Down). If increased mutational load is to be avoided, then hypermutability should be targeted to specific loci or should be transient. The responses of several pathogens to the host's immune system by antigen switching are an excellent example of this, although they are achieved by special genetic devices rather than conventional mutagenesis (SASAKI 1994 Down).

On the mechanisms of mutation and mutation prevention:
Organisms limit their mutation rates by diverse mechanisms. These include metabolic controls over concentrations of endogenous and exogenous mutagens, pre-replication DNA repair systems, the insertion accuracy of polymerases, 3'-exonucleolytic proofreading, and several post-replication systems for repairing mismatches. Different organisms apply different sets of these mechanisms, and the efficiency of a particular mechanism varies among organisms. Sometimes an organism's mutation rate is considered to be "determined" by the particular set of mechanisms it applies. It is more accurate, however, to view that organism's mutation rate as "determined" by deep evolutionary forces, by the life history it has adopted, and by accidents of its evolutionary history. The particular mechanisms employed and their efficiencies are merely devices to carry out the underlying necessity.


*  ACKNOWLEDGMENTS

We thank PHIL ANDERSON, AURORA GARCIA-DORADO, ALEXEY KONDRASHOV, BRAD PRESTON and JOHN WILLIS for providing advice and unpublished results. We thank PAT FOSTER, CHUCK LANGLEY, NORM KAPLAN, PETER KEIGHTLEY, JIM MASON and PAUL SNIEGOWSKI for critical readings of the manuscript.


*  LITERATURE CITED
*TOP
*ABSTRACT
*THE MAGNITUDES OF MUTATION...
*THE EVOLUTION OF MUTATION...
*LITERATURE CITED

ÅGREN, J. and D. W. SCHEMSKE, 1993  Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. semiovata.. Evolution 47:125-135.

AKIYAMA, M., S. KYOIZUMI, Y. HIRAI, Y. KUSUNOKI, and K. IWAMOTO et al., 1995  Mutation frequency in human blood cells increases with age. Mutat. Res. 338:141-149[Medline].

ASHBURNER, M., 1989 Drosophila, A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

AUERBACH, C., 1959  Spontaneous mutations in dry spores of Neurospora crassa.. Z. Vererbungsl 90:335-346[Medline].

BAKER, S. M., C. E. BRONNER, L. ZHANG, A. W. PLUG, and M. ROBATZEK et al., 1995  Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82:309-319[Medline].

BAKER, S. M., A. W. PLUG, T. A. PROLLA, C. E. BRONNER, and A. C. HARRIS et al., 1996  Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature Genet. 13:336-342[Medline].

BATEMAN, A. J., 1959  The viability of near-normal irradiated chromosomes. Int. J. Radiat. Biol. 1:170-180.

BENIAN, G. M., J. E. KIFF, N. NECKELMANN, D. G. MOERMAN, and R. H. WATERSTON, 1989  Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans.. Nature 342:45-50[Medline].

BENZER, S., 1961  On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. USA 47:403-415[Free Full Text].

BIRD, A. P., 1995  Gene number, noise reduction and biological complexity. Trends Genet. 11:94-100[Medline].

BLATTNER, F. R., III, G. PLUNKETT, C. A. BLOCK, N. T. PERNA, and V. BURLAND et al., 1997  The complete genome sequence of Escherichia coli K-12. Science 277:1453-1474[Abstract/Free Full Text].

CHAO, L. and E. C. COX, 1983  Competition between high and low mutating strains of Escherichia coli.. Evolution 37:125-134.

CHARLESWORTH, B., and K. A. HUGHES, 1998 The maintenance of genetic variation in life-history traits, in Evolutionary Genetics from Molecules to Morphology, edited by R. S. SINGH and C. B. KRIMBAS. Cambridge University Press, Cambridge (in press).

CHARLESWORTH, B., D. CHARLESWORTH, and M. T. MORGAN, 1990  Genetic loads and estimates of mutation rates in very inbred plant populations. Nature 347:380-382.

CHARLESWORTH, D. and B. CHARLESWORTH, 1995  Quantitative genetics in plants: the effect of breeding system on genetic variability. Evolution 49:911-920.

CHARLESWORTH, D., E. E. LYONS, and L. B. LITCHFIELD, 1994  Inbreeding depression in two highly inbreeding populations of Leavenworthia.. Proc. R. Soc. Lond. Ser. B Biol. Sci. 258:209-214[Abstract/Free Full Text].

CHRISTENSEN, R. B., J. R. CHRISTENSEN, and C. W. LAWRENCE, 1985  Conjugation-dependent enhancement of induced and spontaneous mutation in the lacI gene of E. coli.. Mol. Gen. Genet. 201:35-37[Medline].

CLARK, D. V., T. M. ROGALSKI, L. M. DONATI, and D. L. BAILLIE, 1988  The unc-22 (IV ) region of Caenorhabditis elegans.. Genetics 119:345-353[Abstract/Free Full Text].

CONNOR, K. F. and R. M. LANNER, 1991  Effects of tree age on pollen, seed, and seedling characteristics in Great Basin bristlecone pine. Bot. Gaz. 152:114-122.

CROW, J. F., 1993  How much do we know about spontaneous human mutation rates? Environ. Mol. Mutagen. 21:122-129[Medline].

CROW, J. F., 1995  Spontaneous mutation as a risk factor. Exp. Clin. Immunogenet. 12:121-128[Medline].

CROW, J. F., 1997  The high spontaneous mutation rate: is it a health risk? Proc. Natl. Acad. Sci. USA 94:8380-8386[Abstract/Free Full Text].

CROW, J. F., and M. J. SIMMONS, 1983 The mutation load in Drosophila., pp. 1–35 in The Genetics and Biology of Drosophila, Vol. 3c, edited by M. ASHBURNER, H. L. CARSON and J. N. THOMPSON. Academic Press, London.

CRUMPACKER, D. W., 1967  Genetic loads in maize (Zea mays L.) and other cross-fertilized plants and animals. Evol. Biol. 1:306-423.

DENG, H.-W. and M. LYNCH, 1996  Estimation of deleterious-mutation parameters in natural populations. Genetics 144:349-360[Abstract].

DENG, H.-W. and M. LYNCH, 1997  Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147:147-155[Abstract].

DE WIND, N., M. DEKKER, A. BERNS, M. RADMAN, and H. TE RIELE, 1995  Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321-330[Medline].

DRAKE, J. W., 1966  Spontaneous mutations accumulating in bacteriophage T4 in the complete absence of DNA replication. Proc. Natl. Acad. Sci. USA 55:738-743[Free Full Text].

DRAKE, J. W., 1991  A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88:7160-7164[Abstract/Free Full Text].

DRAKE, J. W., 1993a  Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90:4171-4175[Abstract/Free Full Text].

DRAKE, J. W., 1993b  General antimutators are improbable. J. Mol. Biol. 229:8-13[Medline].

DRAKE, J. W., and L. S. RIPLEY, 1994 Mutagenesis, pp. 98–124 in Molecular Biology of Bacteriophage T4, edited by J. D. KARAM. American Society for Microbiology, Washington, D.C.

DROST, J. B. and W. R. LEE, 1995  Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25,(Suppl. 26):48-64.

EDELMANN, W., P. E. COHEN, M. KANE, K. LAU, and B. MORROW et al., 1996  Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125-1134[Medline].

EIDE, D. and P. ANDERSON, 1985  The gene structures of spontaneous mutations affecting a Caenorhabditis elegans myosin heavy chain gene. Genetics 109:67-79[Abstract/Free Full Text].

FERNANDEZ, J. and C. LOPEZ-FANJUL, 1996  Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster.. Genetics 143:829-837[Abstract].

FINCH, C. E., 1990 Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, IL.

FINNEGAN, D. J. and D. H. FAWCETT, 1986  Transposable elements in Drosophila melanogaster.. Oxf. Surv. Eukaryotic Genes 3:1-62[Medline].

FISHER, R. A., 1930 The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

FOSTER, P. L., 1997  Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli.. J. Bacteriol. 179:1550-1554[Abstract/Free Full Text].

GABRIEL, A., M. WILLEMS, E. H. MULES, and J. D. BOEKE, 1996  Replication infidelity during a single cycle of Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 93:7767-7771[Abstract/Free Full Text].

GARCIA-DORADO, A., 1997  The rate and effects distribution of viability mutations in Drosophila: minimum distance estimation. Evolution 51:1130-1139.

GILLESPIE, J. H., 1981a  Mutation modification in a random environment. Evolution 35:468-476.

GILLESPIE, J. H., 1981b  Evolution of the mutation rate at a heterotic locus. Proc. Natl. Acad. Sci. USA 78:2452-2454[Abstract/Free Full Text].

GOELET, P., G. P. LOMONOSSOFF, P. J. G. BUTLER, M. E. AKAM, and M. J. GAIT et al., 1982  Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 79:5818-5822[Abstract/Free Full Text].

GOFFEAU, A., B. G. BARRELL, H. BUSSEY, R. W. DAVIS, and B. DUJON et al., 1996  Life with 6000 genes. Science 274:546-567[Abstract/Free Full Text].

GREENWALD, I. S. and H. R. HORVITZ, 1980  unc-93(e1500): a behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics 96:147-164[Abstract/Free Full Text].

GROSS, M. D. and E. C. SIEGEL, 1981  Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat. Res. 91:107-110[Medline].

HALL, J. D., D. M. COEN, B. L. FISHER, M. WEISSLITZ, and S. RANDALL et al., 1984  Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132:26-37[Medline].

HALDANE, J. B. S., 1927  A mathematical theory of natural and artificial selection. Part V. Selection and mutation. Proc. Camb. Philos. Soc. 23:838-844.

HALDANE, J. B. S., 1937  The effect of variation on fitness. Am. Nat. 71:337-349.

HOLLAND, J. J., E. DOMINGO, J. C. DE LA TORRE, and D. A. STEINHAUER, 1990  Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64:3960-3962[Abstract/Free Full Text].

HOULE, D., 1992  Comparing evolvability and variability of quantitative traits. Genetics 130:195-204[Abstract].

HOWE, K. J. and M. ARES, JR, 1997  Intron self-complementarity enforces exon inclusion in yeast pre-mRNA. Proc. Natl. Acad. Sci. USA 94:12467-12472[Abstract/Free Full Text].

HUGHES, K. A., 1995  The inbreeding decline and average dominance of genes affecting male life-history characters in Drosophila melanogaster.. Genet. Res. 65:41-52[Medline].

ISHII, K., H. MATSUDA, Y. IWASA, and A. SASAKI, 1989  Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121:163-174[Abstract/Free Full Text].

JACOBS, K. L. and D. W. GROGAN, 1997  Rates of spontaneous mutation in an Archaeon from geothermal environments. J. Bacteriol. 179:3298-3303[Abstract/Free Full Text].

JOHNSTON, M. O. and D. J. SCHOEN, 1995  Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267:226-229[Abstract/Free Full Text].

JYSSUM, K., 1960  Observations on two types of genetic instability in Escherichia coli.. Acta Path. Microbiol. Scand. 48:113-120.

KARN, J., S. BRENNER, and L. BARNETT, 1983  Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns. Proc. Natl. Acad. Sci. USA 80:4253-4257[Abstract/Free Full Text].

KEARNEY, C. M., J. DONSON, G. E. JONES, and W. O. DAWSON, 1993  Low level of genetic drift in foreign sequences replicating in a RNA virus in plants. Virology 192:11-17[Medline].

KEIGHTLEY, P. D., 1994  The distribution of mutation effects on viability in Drosophila melanogaster.. Genetics 138:1-8[Medline].

KEIGHTLEY, P. D., 1996  The nature of deleterious mutation load in Drosophila. Genetics 144:1993-1999[Abstract].

KEIGHTLEY, P. D. and A. CABALLERO, 1997  Genomic mutation rate for fitness in Caenorhabditis elegans.. Proc. Natl. Acad. Sci. USA 94:3823-3827[Abstract/Free Full Text].

KHUSH, G. S. and C. M. RICK, 1967  Studies on the linkage map of chromosome 4 of the tomato and on the transmission of induced deficiencies. Genetica 38:74-94.

KIBOTA, T. T. and M. LYNCH, 1996  Estimate of the genomic mutation rate deleterious to overall fitness in E. coli.. Nature 381:694-696[Medline].

KIMBLE, J., and S. WARD, 1988 Germ-line development and fertilization, pp. 191–213 in The Nematode Caenorhabditis elegans, edited by W. B. WOOD. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

KIMURA, M., 1960  Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load. J. Genet. 57:21-34.

KIMURA, M., 1967  On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 9:23-34.

KIMURA, M., 1983a The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge.

KIMURA, M., 1983b  Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1:84-93[Abstract].

KIMURA, M. and T. MARUYAMA, 1966  The mutation load with epistatic gene interactions in fitness. Genetics 54:1337-1351[Free Full Text].

KIMURA, M., and T. OHTA, 1971 Theoretical Topics in Population Genetics. Princeton University Press, Princeton, N.J.

KIRKWOOD, T. B. L., R. F. ROSENBERGER and D. J. GALAS, 1986 Accuracy in Molecular Processes. Chapman and Hall, London.

KLEKOWSKI, E. J., 1973  Genetic load in Osmunda regalis populations. Am. J. Bot. 60:146-154.

KLEKOWSKI, E. J., 1988 Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.

KLEKOWSKI, E. J., 1992  Mutation rates in diploid annuals—are they immutable? Int. J. Plant Sci. 153:462-465.

KLEKOWSKI, E. J. and P. J. GODFREY, 1989  Aging and mutation in plants: a comparison of woody mangroves and herbaceous annuals. Nature 340:389-391.

KLEKOWSKI, E. J., R. L. LOWENFELD, and P. K. HEPLER, 1994  Mangrove genetics. II. Outcrossing and lower spontaneous mutation rates in Puerto Rican Rhizophora. Int. J. Plant Sci. 155:373-381.

KNIGHT, G. R. and A. ROBERTSON, 1957  Fitness as a measurable character in Drosophila. Genetics 42:524-530[Free Full Text].

KOHLER, S. W., G. S. PROVOST, A. FIECK, P. L. KRETZ, and W. O. BULLOCK et al., 1991  Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc. Natl. Acad. Sci. USA 88:7958-7962[Abstract/Free Full Text].

KONDRASHOV, A., 1984  Deleterious mutations as an evolutionary factor. I. The advantage of recombination. Genet. Res. 44:325-332.

KONDRASHOV, A. S., 1988  Deleterious mutations and the evolution of sexual reproduction. Nature 336:435-440[Medline].

KONDRASHOV, A. S., 1993  A classification of hypotheses on the advantage of amphimixis. J. Hered. 84:372-387[Abstract/Free Full Text].

KONDRASHOV, A. S., 1995  Modifiers of mutation-selection balance: general approach and the evolution of mutation rates. Genet. Res. 66:53-69.

KONDRASHOV, A. S. and J. F. CROW, 1993  A molecular approach to estimating the human deleterious mutation rate. Hum. Mutat. 2:229-234[Medline].

KONDRASHOV, A. S. and D. HOULE, 1994  Genotype-environment interaction and the estimation of the genomic mutation rate in Drosophila melanogaster.. Proc. R. Soc. Lond. Ser. B Biol. Sci. 258:221-227[Medline].

KUNZ, B. A. and B. W. GLICKMAN, 1983  The infidelity of conjugal DNA transfer in Escherichia coli.. Genetics 105:489-500[Abstract/Free Full Text].

KUTTER, E., T. STIDHAM, B. GUTTMAN, E. KUTTER, D. BATTS et al., 1994 Genomic map of bacteriophage T4, pp. 491–518 in Molecular Biology of Bacteriophage T4, edited by J. D. KARAM. American Society of Microbiology, Washington D.C.

LAIRD, C.D., 1971  Chromatid structure: relationship between DNA content and nucleotide sequence diversity. Chromosoma 32:378-406[Medline].

LANDE, R. and D. W. SCHEMSKE, 1985  The evolution of self fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39:24-40.

LECLERC, J. E., B. LI, W. L. PAYNE, and T. A. CEBULA, 1996  High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208-1211[Abstract/Free Full Text].

LEIGH, E. G., 1970  Natural selection and mutability. Am. Nat. 104:301-305.

LEIGH, E. G., 1973  The evolution of mutation rates. Genetics Suppl. 73:1-18.

LEVIN, J. Z. and H. R. HORVITZ, 1992  The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction. J. Cell Biol. 117:143-155[Abstract/Free Full Text].

LIU, J., B. SCHRANK, and R. H. WATERSTON, 1996  Interaction between a putative mechanosensory membrane channel and a collagen. Science 273:361-364[Abstract].

MANSKY, L. M. and H. M. TEMIN, 1994  Lower mutation rate of bovine leukemia virus relative to spleen necrosis virus. J. Virol. 68:494-499[Abstract/Free Full Text].

MANSKY, L. M. and H. M. TEMIN, 1995  Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69:5087-5094[Abstract/Free Full Text].

MAO, E. F., L. LANE, J. LEE, and J. H. MILLER, 1997  Proliferation of mutators in a cell population. J. Bacteriol. 179:417-422[Abstract/Free Full Text].

MATIC, I., M. RADMAN, F. TADDEI, B. PICARD, and C. DOIT et al., 1997  Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833-1834[Free Full Text].

MAYNARD SMITH, J., 1991  The population genetics of bacteria. Proc. R. Soc. Lond. Ser. B Biol. Sci. 245:37-41[Abstract/Free Full Text].

MCGEOCH, D. J., M. A. DALRYMPLE, A. J. DAVISON, A. DOLAN, and M. C. FRAME et al., 1988  The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69:1531-1574[Abstract/Free Full Text].

MCKNIGHT, S. L., 1980  The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res. 8:5949-5964[Abstract/Free Full Text].

MCVEAN, G. T. and L. D. HURST, 1997  Evidence for a selectively favorable reduction in the mutation rate of the X chromosome. Nature 386:388-392[Medline].

MOXON, E. R., P. B. RAINEY, M. A. NOWAK, and R. E LENSKI, 1994  Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:23-33.

MUKAI, T., 1964  The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1-19[Free Full Text].

MUKAI, T., 1969  The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61:749-761[Free Full Text].

MUKAI, T. and C. C. COCKERHAM, 1977  Spontaneous mutation rates at enzyme loci in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 74:2514-2517[Abstract/Free Full Text].

MUKAI, T., S. I. CHIGUSA, L. E. METTLER, and J. F. CROW, 1972  Mutation rate and dominance of genes affecting viability in Drosophila melanogaster.. Genetics 72:335-355[Abstract/Free Full Text].

MUKAI, T., R. A. CARDELLINO, T. K. WATANABE, and J. F. CROW, 1974  The genetic variance for viability and its components in a local population of Drosophila melanogaster.. Genetics 78:1195-1206[Abstract/Free Full Text].

MULLER, H. J., 1928  The measurement of gene mutation rate in Drosophila, its high variability, and its dependence on temperature. Genetics 13:279-357[Free Full Text].

MULLER, H. J., 1952  The standard error of the frequency of mutants some of which are of common origin. Genetics 37:608.

NARAYANAN, L., J. A. FRITZELL, S. M. BAKER, R. M. LISKAY, and P. M. GLAZER, 1997  Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2.. Proc. Natl. Acad. Sci. USA 94:3122-3127[Abstract/Free Full Text].

NEE, S., 1987  The evolution of multicompartmental genomes in viruses. J. Mol. Evol. 25:277-281[Medline].

NINIO, J., 1991  Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics 129:957-962[Abstract].

THEL, H., 1987  Adaptation of Drosophila melanogaster populations to high mutation pressure: evolutionary adjustment of mutation rates. Proc. Natl. Acad. Sci. USA 84:1045-1048[Abstract/Free Full Text].

OHNISHI, O., 1977  Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effects of polygenic mutations. Genetics 87:529-545[Abstract/Free Full Text].

OHNISHI, O., 1982  Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Jpn. J. Genet. 57:623-639.

OHTA, T. and C. C. COCKERHAM, 1974  Detrimental genes with partial selfing and effects on a neutral locus. Genet. Res. 23:191-200[Medline].

ORR, H. A., 1995  Somatic mutation favors the evolution of diploidy. Genetics 139:1441-1447[Abstract].

PARSONS, R., G.-M. LI, M. LONGLEY, P. MODRICH, and B. LIU et al., 1995  Mismatch repair deficiency in phenotypically normal human cells. Science 268:738-740[Abstract/Free Full Text].

PARTHASARATHI, S., A. VARELA-ECHAVARRÍA, Y. RON, B. D. PRESTON, and J. P. DOUGHERTY, 1995  Genetic rearrangements occurring during a single cycle of murine leukemia virus vector replication: characterization and implications. J. Virol. 69:7991-8000[Abstract/Free Full Text].

PATHAK, V. K. and H. M. TEMIN, 1990  Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc. Natl. Acad. Sci. USA 87:6019-6023[Abstract/Free Full Text].

PETERSON, S. N., T. LUCIER, K. HEITZMAN, E. A. SMITH, and K. F. BOTT et al., 1995  Genetic map of the Mycoplasma genitalium chromosome. J. Bacteriol. 177:3199-3204[Abstract/Free Full Text].

PRESSING, J. and D. C. REANNEY, 1984  Divided genomes and intrinsic noise. J. Mol. Evol. 20:135-146[Medline].

QUIÑONES, A. and R. PIECHOCKI, 1985  Isolation and characterization of Escherichia coli antimutators. Mol. Gen. Genet. 201:315-322[Medline].

RATNER, L., W. HASELTINE, R. PATARCA, K. J. LIVAK, and B. STARCICH et al., 1985  Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313:277-284[Medline].

REHA-KRANTZ, L. J., R. L. NONAY, and S. STOCKI, 1993  Bacteriophage T4 DNA polymerase mutations that confer sensitivity to the PPi analog phosphonoacetic acid. J. Virol. 67:60-66[Abstract/Free Full Text].

REITMAIR, A. H., R. SCHMITS, A. EWEL, B. BAPAT, and M. REDSTON et al., 1995  MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nature Genet. 11:64-70[Medline].

RISCH, N, E. W. REICH, M. M. WISHNICK, and J. G. MCCARTHY, 1987  Spontaneous mutation and parental age in humans. Am. J. Hum. Genet. 41:218-248[Medline].

ROSENBLUTH, R. E., C. CUDDEFORD, and D. L. BAILLIE, 1983  Mutagenesis in Caenorhabditis elegans. I. A rapid eukaryotic mutagen test system using the reciprocal translocation eT1(III; V ). Mutat. Res. 119:39-48.

RUSSELL, L. B. and W. L. RUSSELL, 1996  Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc. Natl. Acad. Sci. USA 93:13072-13077[Abstract/Free Full Text].

SAGATA, N., T. YASUNAGA, J. TSUZUKU-KAWAMURA, K. OHISHI, and Y. OGAWA et al., 1985  Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. USA 82:677-681[Abstract/Free Full Text].

SAPIENZA, C., 1994  Parental origin effects, genome imprinting, and sex-ratio distortion: double or nothing? Am. J. Hum. Genet. 55:1073-1075[Medline].

SASAKI, A., 1994  Evolution of antigen drift/switching: continuously evading pathogens. J. Theor. Biol. 168:291-308[Medline].

SCHALET, A., 1960 A study of spontaneous visible mutations in Drosophila melanogaster. Ph.D. Thesis, Indiana University, Bloomington.

SCHNELL, M. J., L. BUONOCORE, M. A. WHITT, and J. K. ROSE, 1996  The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J. Virol. 70:2318-2323[Abstract/Free Full Text].

SHIANG, R., L. M. THOMPSON, Y.-Z. ZHU, D. M. CHURCH, and T. J. FIELDER et al., 1994  Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335-342[Medline].

SIMMONS, M. J., E. W. SHELDON, and J. F. CROW, 1978  Heterozygous effects on fitness of EMS-treated chromosomes in Drosophila melanogaster.. Genetics 88:575-590[Abstract/Free Full Text].

SNIEGOWSKI, P. D., P. J. GERRISH, and R. E. LENSKI, 1997  Evolution of high mutation rates in experimental populations of E. coli.. Nature 387:703-705[Medline].

STADLER, L. J., 1929  Chromosome number and the mutation rate in Avena and Triticum.. Proc. Natl. Acad. Sci. USA 15:876-881[Free Full Text].

STADLER, L. J., 1930  The frequency of mutation of specific genes in maize (Abstr.). Anat. Rec. 47:381.

STEPONKUS, P. L. and S. CALDWELL, 1993  An optimized procedure for the cryopreservation of Drosophila melanogaster embryos. Cryo Lett. 14:375-380.

STURTEVANT, A. H., 1937  Essays on evolution. I. On the effects of selection on the mutation rate. Q. Rev. Biol. 12:464-476.

SULSTON, J. E. and S. BRENNER, 1974  The DNA of Caenorhabditis elegans.. Genetics 77:95-104[Abstract/Free Full Text].

SVED, J. A., 1975  Fitness of third chromosome homozygotes in Drosophila melanogaster.. Genet. Res. 25:197-200[Medline].

TADDEI, F., M. RADMAN, and J. A. HALLIDAY, 1995  Mutation rate of the F episome. Science 269:288-289[Free Full Text].

TADDEI, F., M. RADMAN, J. MAYNARD-SMITH, B. TOUPANCE, and P. H. GOUYON et al., 1997  Role of mutator alleles in adaptive evolution. Nature 387:700-702[Medline].

TAKANO, T., S. KUSAKABE, and T. MUKAI, 1987  The genetic structure of natural populations of Drosophila melanogaster. XX. Comparisons of genotype-environment interaction in viability between a northern and southern population. Genetics 117:245-254[Abstract/Free Full Text].

TORKELSON, J., R. S. HARRIS, M.-J. LOMBARDO, J. NAGENDRAN, and C. THULIN et al., 1997  Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16:3303-3311[Medline].

TRÖBNER, W. and R. PIECHOCKI, 1984  Selection against hypermutability in Escherichia coli during long term evolution. Mol. Gen. Genet. 198:177-178[Medline].

VOGEL, F., and A. MOTULSKY, 1997 Human Genetics: Problems and Approaches, Ed. 3. Springer-Verlag, Berlin, New York.

WALKER, G. C., 1984  Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli.. Microbiol. Rev. 48:60-93[Free Full Text].

WALLACE, B., 1952  The estimation of adaptive values of experimental populations. Evolution 6:333-341.

WALLACE, B., 1956  Studies on irradiated populations of Drosophila melanogaster.. J. Genet. 54:280-293.

WIJSMAN, E., 1984  The effect of mutagenesis on competitive ability in Drosophila. Evolution 38:571-581.

WILLETTS, N., and R. SKURRAY, 1987 Structure and function of the F factor and mechanism of conjugation, pp. 1110–1133 in Escherichia coli and Salmonella typhimurium, edited by F. C. NEIDHARDT. American Society for Microbiology, Washington, D.C.

WOODRUFF, R. C., J. N. THOMPSON, M. A. SEEGER, and W. E. SPIVEY, 1984  Variation in spontaneous mutation rates in natural population lines of Drosophila melanogaster.. Heredity 53:223-234.

WOODRUFF, R. C., H. HUAI, and J. N. THOMPSON, 1997  Clusters of new mutation in the evolutionary landscape. Genetica 98:149-160.

YAMAGUCHI, O. and T. MUKAI, 1974  Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster.. Genetics 78:1209-1221[Abstract/Free Full Text].


*  NOTE ADDED IN PROOF

HOWE and ARES 1997 Down report that yeast introns employ stem-loop structures to bring together the splice junctions at the opposite ends of an intron and thus to increase the probability of correct splicing. If this were a general effect, it might add 102 to 103 b to the mutational target size of a locus. Such an effect would have little or no effect on the values of µeg or µegs in Table 5, but would slightly increase the values of Ge and slightly reduce the values of µb and µg. These changes would be small relative to the present uncertainties of these values in higher eukaryotes.




This article has been cited by other articles:


Home page
GeneticsHome page
N. Tromas and S. F. Elena
The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus
Genetics, July 1, 2010; 185(3): 983 - 989.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
J. B. Peris, P. Davis, J. M. Cuevas, M. R. Nebot, and R. Sanjuan
Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1
Genetics, June 1, 2010; 185(2): 603 - 609.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. Springman, T. Keller, I. J. Molineux, and J. J. Bull
Evolution at a High Imposed Mutation Rate: Adaptation Obscures the Load in Phage T7
Genetics, January 1, 2010; 184(1): 221 - 232.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
M. J. McDonald, S. M. Gehrig, P. L. Meintjes, X.-X. Zhang, and P. B. Rainey
Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation
Genetics, November 1, 2009; 183(3): 1041 - 1053.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
T. M. Albertson, M. Ogawa, J. M. Bugni, L. E. Hays, Y. Chen, Y. Wang, P. M. Treuting, J. A. Heddle, R. E. Goldsby, and B. D. Preston
DNA polymerase {varepsilon} and {delta} proofreading suppress discrete mutator and cancer phenotypes in mice
PNAS, October 6, 2009; 106(40): 17101 - 17104.
[Abstract] [Full Text] [PDF]


Home page
J BiochemHome page
R. Sugiyama, Y. Habu, A. Ohnari, N. Miyano-Kurosaki, and H. Takaku
RNA Interference Targeted to the Conserved Dimerization Initiation Site (DIS) of HIV-1 Restricts Virus Escape Mutation
J. Biochem., October 1, 2009; 146(4): 481 - 489.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
P. Chen and E. I. Shakhnovich
Lethal Mutagenesis in Viruses and Bacteria
Genetics, October 1, 2009; 183(2): 639 - 650.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
O. C. Martin and A. Wagner
Effects of Recombination on Complex Regulatory Circuits
Genetics, October 1, 2009; 183(2): 673 - 684.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
D. R. Denver, P. C. Dolan, L. J. Wilhelm, W. Sung, J. I. Lucas-Lledo, D. K. Howe, S. C. Lewis, K. Okamoto, W. K. Thomas, M. Lynch, et al.
A genome-wide view of Caenorhabditis elegans base-substitution mutation processes
PNAS, September 22, 2009; 106(38): 16310 - 16314.
[Abstract] [Full Text] [PDF]


Home page
Nucleic Acids ResHome page
Y. Azuma, A. Hosoyama, M. Matsutani, N. Furuya, H. Horikawa, T. Harada, H. Hirakawa, S. Kuhara, K. Matsushita, N. Fujita, et al.
Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus
Nucleic Acids Res., September 1, 2009; 37(17): 5768 - 5783.
[Abstract] [Full Text] [PDF]


Home page
ANN BOT (LOND)Home page
J. Warren
Extra petals in the buttercup (Ranunculus repens) provide a quick method to estimate the age of meadows
Ann. Bot., September 1, 2009; 104(4): 785 - 788.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. G. Hoen, G. Margos, S. J. Bent, M. A. Diuk-Wasser, A. Barbour, K. Kurtenbach, and D. Fish
Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events
PNAS, September 1, 2009; 106(35): 15013 - 15018.
[Abstract] [Full Text] [PDF]


Home page
Clin. Cancer Res.Home page
C. Y. F. Lee, P. S. Rennie, and W. W.G. Jia
MicroRNA Regulation of Oncolytic Herpes Simplex Virus-1 for Selective Killing of Prostate Cancer Cells
Clin. Cancer Res., August 15, 2009; 15(16): 5126 - 5135.
[Abstract] [Full Text] [PDF]


Home page
J PLANKTON RESHome page
G. Sorensen, A. C. Baker, M. J. Hall, C. B. Munn, and D. C. Schroeder
Novel virus dynamics in an Emiliania huxleyi bloom
J. Plankton Res., July 1, 2009; 31(7): 787 - 791.
[Abstract] [Full Text] [PDF]


Home page
Biol LettHome page
L. Bromham
Why do species vary in their rate of molecular evolution?
Biol Lett, June 23, 2009; 5(3): 401 - 404.
[Abstract] [Full Text] [PDF]


Home page
J. Gen. Virol.Home page
S. Duffy and E. C. Holmes
Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses
J. Gen. Virol., June 1, 2009; 90(6): 1539 - 1547.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
J. M. Cuevas, F. Gonzalez-Candelas, A. Moya, and R. Sanjuan
Effect of Ribavirin on the Mutation Rate and Spectrum of Hepatitis C Virus In Vivo
J. Virol., June 1, 2009; 83(11): 5760 - 5764.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
R. H. Heineman, J. J. Bull, and I. J. Molineux
Layers of Evolvability in a Bacteriophage Life History Trait
Mol. Biol. Evol., June 1, 2009; 26(6): 1289 - 1298.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
A. D. Cutter, A. Dey, and R. L. Murray
Evolution of the Caenorhabditis elegans Genome
Mol. Biol. Evol., June 1, 2009; 26(6): 1199 - 1234.
[Abstract] [Full Text] [PDF]


Home page
Cancer Res.Home page
M. T. Russo, G. De Luca, I. Casorelli, P. Degan, S. Molatore, F. Barone, F. Mazzei, T. Pannellini, P. Musiani, and M. Bignami
Role of MUTYH and MSH2 in the Control of Oxidative DNA Damage, Genetic Instability, and Tumorigenesis
Cancer Res., May 15, 2009; 69(10): 4372 - 4379.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
J. I. Lucas-Lledo and M. Lynch
Evolution of Mutation Rates: Phylogenomic Analysis of the Photolyase/Cryptochrome Family
Mol. Biol. Evol., May 1, 2009; 26(5): 1143 - 1153.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
S. Gago, S. F. Elena, R. Flores, and R. Sanjuan
Extremely High Mutation Rate of a Hammerhead Viroid
Science, March 6, 2009; 323(5919): 1308 - 1308.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
Y. Watanabe, A. Takahashi, M. Itoh, and T. Takano-Shimizu
Molecular Spectrum of Spontaneous de Novo Mutations in Male and Female Germline Cells of Drosophila melanogaster
Genetics, March 1, 2009; 181(3): 1035 - 1043.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
J. G. Gibbons and A. Rokas
Comparative and Functional Characterization of Intragenic Tandem Repeats in 10 Aspergillus Genomes
Mol. Biol. Evol., March 1, 2009; 26(3): 591 - 602.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
N. Phillips, M. Salomon, A. Custer, D. Ostrow, and C. F. Baer
Spontaneous Mutational and Standing Genetic (Co)variation at Dinucleotide Microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans
Mol. Biol. Evol., March 1, 2009; 26(3): 659 - 669.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
D. J. Wilson, E. Gabriel, A. J.H. Leatherbarrow, J. Cheesbrough, S. Gee, E. Bolton, A. Fox, C. A. Hart, P. J. Diggle, and P. Fearnhead
Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni
Mol. Biol. Evol., February 1, 2009; 26(2): 385 - 397.
[Abstract] [Full Text] [PDF]


Home page
J HeredHome page
R. C. Woodruff and M. Zhang
Adaptation from Leaps in the Dark
J. Hered., January 1, 2009; 100(1): 7 - 10.
[Abstract] [Full Text] [PDF]


Home page
J HeredHome page
K. H. Takahashi, K. Tanaka, M. Itoh, and T. Takano-Shimizu
Reduced X-Linked Rare Polymorphism in Males in Comparison to Females of Drosophila melanogaster
J. Hered., January 1, 2009; 100(1): 97 - 105.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
E. Loire, F. Praz, D. Higuet, P. Netter, and G. Achaz
Hypermutability of Genes in Homo sapiens Due to the Hosting of Long Mono-SSR
Mol. Biol. Evol., January 1, 2009; 26(1): 111 - 121.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
S. Salloum, C. Oniangue-Ndza, C. Neumann-Haefelin, L. Hudson, S. Giugliano, M. aus dem Siepen, J. Nattermann, U. Spengler, G. M. Lauer, M. Wiese, et al.
Escape from HLA-B*08-Restricted CD8 T Cells by Hepatitis C Virus Is Associated with Fitness Costs
J. Virol., December 1, 2008; 82(23): 11803 - 11812.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
M. M. Desai and J. B. Plotkin
The Polymorphism Frequency Spectrum of Finitely Many Sites Under Selection
Genetics, December 1, 2008; 180(4): 2175 - 2191.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
S. E. Massey
The Proteomic Constraint and Its Role in Molecular Evolution
Mol. Biol. Evol., December 1, 2008; 25(12): 2557 - 2565.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. Durrett and D. Schmidt
Waiting for Two Mutations: With Applications to Regulatory Sequence Evolution and the Limits of Darwinian Evolution
Genetics, November 1, 2008; 180(3): 1501 - 1509.
[Abstract] [Full Text] [PDF]


Home page
J. Bacteriol.Home page
J. Scott, P. Thompson-Mayberry, S. Lahmamsi, C. J. King, and W. M. McShan
Phage-Associated Mutator Phenotype in Group A Streptococcus
J. Bacteriol., October 1, 2008; 190(19): 6290 - 6301.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
M. Lynch
The Cellular, Developmental and Population-Genetic Determinants of Mutation-Rate Evolution
Genetics, October 1, 2008; 180(2): 933 - 943.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
J. J. Bull and C. O. Wilke
Lethal Mutagenesis of Bacteria
Genetics, October 1, 2008; 180(2): 1061 - 1070.
[Abstract] [Full Text] [PDF]


Home page
Arch Gen PsychiatryHome page
E. M. Frans, S. Sandin, A. Reichenberg, P. Lichtenstein, N. Langstrom, and C. M. Hultman
Advancing Paternal Age and Bipolar Disorder
Arch Gen Psychiatry, September 1, 2008; 65(9): 1034 - 1040.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. R. Mackwan, G. T. Carver, G. E. Kissling, J. W. Drake, and D. W. Grogan
The Rate and Character of Spontaneous Mutation in Thermus thermophilus
Genetics, September 1, 2008; 180(1): 17 - 25.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
K. Jain
Loss of Least-Loaded Class in Asexual Populations Due to Drift and Epistasis
Genetics, August 1, 2008; 179(4): 2125 - 2134.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
W. Qian and J. Zhang
Gene Dosage and Gene Duplicability
Genetics, August 1, 2008; 179(4): 2319 - 2324.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
V. Martin and E. Domingo
Influence of the Mutant Spectrum in Viral Evolution: Focused Selection of Antigenic Variants in a Reconstructed Viral Quasispecies
Mol. Biol. Evol., August 1, 2008; 25(8): 1544 - 1554.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
M. Lynch, W. Sung, K. Morris, N. Coffey, C. R. Landry, E. B. Dopman, W. J. Dickinson, K. Okamoto, S. Kulkarni, D. L. Hartl, et al.
From the Cover: A genome-wide view of the spectrum of spontaneous mutations in yeast
PNAS, July 8, 2008; 105(27): 9272 - 9277.
[Abstract] [Full Text] [PDF]


Home page
J Exp BotHome page
M. R. Malik, F. Wang, J. M. Dirpaul, N. Zhou, J. Hammerlindl, W. Keller, S. R. Abrams, A. M. R. Ferrie, and J. E. Krochko
Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis
J. Exp. Bot., July 1, 2008; 59(10): 2857 - 2873.
[Abstract] [Full Text] [PDF]


Home page
CarcinogenesisHome page
R. van Boxtel, P. W. Toonen, H. S. van Roekel, M. Verheul, B. M. G. Smits, J. Korving, A. de Bruin, and E. Cuppen
Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis
Carcinogenesis, June 1, 2008; 29(6): 1290 - 1297.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
C. G. Artieri, W. Haerty, B. P. Gupta, and R. S. Singh
Sexual Selection and Maintenance of Sex: Evidence from Comparisons of Rates of Genomic Accumulation of Mutations and Divergence of Sex-Related Genes in Sexual and Hermaphroditic Species of Caenorhabditis
Mol. Biol. Evol., May 1, 2008; 25(5): 972 - 979.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
I. J. Tsai, D. Bensasson, A. Burt, and V. Koufopanou
Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle
PNAS, March 25, 2008; 105(12): 4957 - 4962.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
S. J. Salipante, J. M. Thompson, and M. S. Horwitz
Phylogenetic Fate Mapping: Theoretical and Experimental Studies Applied to the Development of Mouse Fibroblasts
Genetics, February 1, 2008; 178(2): 967 - 977.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
S. Coyle and E. Kroll
Starvation Induces Genomic Rearrangements and Starvation-Resilient Phenotypes in Yeast
Mol. Biol. Evol., February 1, 2008; 25(2): 310 - 318.
[Abstract] [Full Text] [PDF]


Home page
BioinformaticsHome page
C. Bock and T. Lengauer
Computational epigenetics
Bioinformatics, January 1, 2008; 24(1): 1 - 10.
[Abstract] [Full Text] [PDF]


Home page
BloodHome page
J. V. Lopes, J. M. Pacheco, and D. Dingli
Acquired hematopoietic stem-cell disorders and mammalian size
Blood, December 1, 2007; 110(12): 4120 - 4122.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
K. K. Orlinger, R. M. Kofler, F. X. Heinz, V. M. Hoenninger, and C. W. Mandl
Selection and Analysis of Mutations in an Encephalomyocarditis Virus Internal Ribosome Entry Site That Improve the Efficiency of a Bicistronic Flavivirus Construct
J. Virol., November 15, 2007; 81(22): 12619 - 12629.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
U. Bergthorsson, D. I. Andersson, and J. R. Roth
Ohno's dilemma: Evolution of new genes under continuous selection
PNAS, October 23, 2007; 104(43): 17004 - 17009.
[Abstract] [Full Text] [PDF]


Home page
Genome ResHome page
R. Belshaw, O. G. Pybus, and A. Rambaut
The evolution of genome compression and genomic novelty in RNA viruses
Genome Res., October 1, 2007; 17(10): 1496 - 1504.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
R. Belshaw, J. Watson, A. Katzourakis, A. Howe, J. Woolven-Allen, A. Burt, and M. Tristem
Rate of Recombinational Deletion among Human Endogenous Retroviruses
J. Virol., September 1, 2007; 81(17): 9437 - 9442.
[Abstract] [Full Text] [PDF]


Home page
J. Virol.Home page
S. Chevaliez, R. Brillet, E. Lazaro, C. Hezode, and J.-M. Pawlotsky
Analysis of Ribavirin Mutagenicity in Human Hepatitis C Virus Infection
J. Virol., July 15, 2007; 81(14): 7732 - 7741.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
D. Ostrow, N. Phillips, A. Avalos, D. Blanton, A. Boggs, T. Keller, L. Levy, J. Rosenbloom, and C. F. Baer
Mutational Bias for Body Size in Rhabditid Nematodes
Genetics, July 1, 2007; 176(3): 1653 - 1661.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
J. P. Bollback and J. P. Huelsenbeck
Clonal Interference Is Alleviated by High Mutation Rates in Large Populations
Mol. Biol. Evol., June 1, 2007; 24(6): 1397 - 1406.
[Abstract] [Full Text] [PDF]


Home page
Am. J. Bot.Home page
J. Muller, J. G. Day, K. Harding, D. Hepperle, M. Lorenz, and T. Friedl
Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP)
Am. J. Botany, May 1, 2007; 94(5): 799 - 808.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
N. Takahata
Molecular Clock: An Anti-neo-Darwinian Legacy
Genetics, May 1, 2007; 176(1): 1 - 6.
[Full Text] [PDF]


Home page
J. Virol.Home page
C. Terzian, M. Henry, A. Meyerhans, S. Wain-Hobson, and J.-P. Vartanian
Induction of Mutations in Drosophila melanogaster gypsy Retroelements by Modulation of Intracellular Deoxynucleoside Triphosphate Pools In Vivo
J. Virol., May 1, 2007; 81(9): 4900 - 4903.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. R. Mackwan, G. T. Carver, J. W. Drake, and D. W. Grogan
An Unusual Pattern of Spontaneous Mutations Recovered in the Halophilic Archaeon Haloferax volcanii
Genetics, May 1, 2007; 176(1): 697 - 702.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
P. J. Gerrish, A. Colato, A. S. Perelson, and P. D. Sniegowski
Complete genetic linkage can subvert natural selection
PNAS, April 10, 2007; 104(15): 6266 - 6271.
[Abstract] [Full Text] [PDF]


Home page
Syst BiolHome page
P. A. Reeves and C. M. Richards
Distinguishing Terminal Monophyletic Groups from Reticulate Taxa: Performance of Phenetic, Tree-Based, and Network Procedures
Syst Biol, April 1, 2007; 56(2): 302 - 320.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
C. Fraser, W. P. Hanage, and B. G. Spratt
Recombination and the Nature of Bacterial Speciation
Science, January 26, 2007; 315(5811): 476 - 480.
[Abstract] [Full Text] [PDF]


Home page
Proc R Soc BHome page
V. Furio, A. Moya, and R. Sanjuan
The cost of replication fidelity in human immunodeficiency virus type 1
Proc R Soc B, January 22, 2007; 274(1607): 225 - 230.
[Abstract] [Full Text] [PDF]


Home page
BioinformaticsHome page
X. Li and T. Kahveci
A Novel algorithm for identifying low-complexity regions in a protein sequence
Bioinformatics, December 15, 2006; 22(24): 2980 - 2987.
[Abstract] [Full Text] [PDF]


Home page
Genome ResHome page
B. E. Shakhnovich and E. V. Koonin
Origins and impact of constraints in evolution of gene families
Genome Res., December 1, 2006; 16(12): 1529 - 1536.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
C. F. Baer, N. Phillips, D. Ostrow, A. Avalos, D. Blanton, A. Boggs, T. Keller, L. Levy, and E. Mezerhane
Cumulative Effects of Spontaneous Mutations for Fitness in Caenorhabditis: Role of Genotype, Environment and Stress
Genetics, November 1, 2006; 174(3): 1387 - 1395.
[Abstract] [Full Text] [PDF]


Home page
Proc R Soc BHome page
A. Robert
Negative environmental perturbations may improve species persistence
Proc R Soc B, October 7, 2006; 273(1600): 2501 - 2506.
[Abstract] [Full Text] [PDF]


Home page
Proc R Soc BHome page
A Fenton, J Lello, and M.B Bonsall
Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence
Proc R Soc B, August 22, 2006; 273(1597): 2083 - 2090.
[Abstract] [Full Text] [PDF]


Home page
J Exp BotHome page
C-A Whittle and M. Johnston
Moving forward in determining the causes of mutations: the features of plants that make them suitable for assessing the impact of environmental factors and cell age
J. Exp. Bot., June 1, 2006; 57(9): 1847 - 1855.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. A. Thomas, J. J. Welch, M. Woolfit, and L. Bromham
There is no universal molecular clock for invertebrates, but rate variation does not scale with body size
PNAS, May 9, 2006; 103(19): 7366 - 7371.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
J. W. Drake
Chaos and Order in Spontaneous Mutation
Genetics, May 1, 2006; 173(1): 1 - 8.
[Full Text] [PDF]


Home page
GeneticsHome page
M. E. Palmer and M. Lipsitch
The Influence of Hitchhiking and Deleterious Mutation Upon Asexual Mutation Rates
Genetics, May 1, 2006; 173(1): 461 - 472.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. K. Pfeiffer and K. Kirkegaard
Bottleneck-mediated quasispecies restriction during spread of an RNA virus from inoculation site to brain
PNAS, April 4, 2006; 103(14): 5520 - 5525.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
S. J. Salipante and M. S. Horwitz
Phylogenetic fate mapping
PNAS, April 4, 2006; 103(14): 5448 - 5453.
[Abstract] [Full Text] [PDF]


Home page
Mol. Pharmacol.Home page
P. Leyssen, E. De Clercq, and J. Neyts
The Anti-Yellow Fever Virus Activity of Ribavirin Is Independent of Error-Prone Replication
Mol. Pharmacol., April 1, 2006; 69(4): 1461 - 1467.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
B. Eldon and J. Wakeley
Coalescent Processes When the Distribution of Offspring Number Among Individuals Is Highly Skewed
Genetics, April 1, 2006; 172(4): 2621 - 2633.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. G. Shaw and S.-M. Chang
Gene Action of New Mutations in Arabidopsis thaliana
Genetics, March 1, 2006; 172(3): 1855 - 1865.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. A. Heck, J. L. Argueso, Z. Gemici, R. G. Reeves, A. Bernard, C. F. Aquadro, and E. Alani
Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair
PNAS, February 28, 2006; 103(9): 3256 - 3261.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
J. R. Stewart, J. Vinje, S. J. G. Oudejans, G. I. Scott, and M. D. Sobsey
Sequence Variation among Group III F-Specific RNA Coliphages from Water Samples and Swine Lagoons
Appl. Envir. Microbiol., February 1, 2006; 72(2): 1226 - 1230.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
L. Loewe, B. Charlesworth, C. Bartolome, and V. Noel
Estimating Selection on Nonsynonymous Mutations
Genetics, February 1, 2006; 172(2): 1079 - 1092.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
R. Burger, M. Willensdorfer, and M. A. Nowak
Why Are Phenotypic Mutation Rates Much Higher Than Genotypic Mutation Rates?
Genetics, January 1, 2006; 172(1): 197 - 206.
[Abstract] [Full Text] [PDF]


Home page
Biol LettHome page
Y. Gong, R.C Woodruff, and J.N Thompson Jr
Deleterious genomic mutation rate for viability in Drosophila melanogaster using concomitant sibling controls
Biol Lett, December 22, 2005; 1(4): 492 - 495.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
R. M. Clark, S. Tavare, and J. Doebley
Estimating a Nucleotide Substitution Rate for Maize from Polymorphism at a Major Domestication Locus
Mol. Biol. Evol., November 1, 2005; 22(11): 2304 - 2312.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
F.-X. Campbell-Valois, K. Tarassov, and S. W. Michnick
Massive sequence perturbation of a small protein
PNAS, October 18, 2005; 102(42): 14988 - 14993.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
J. L. MacKenzie, F. E. Saade, Q. H. Le, T. E. Bureau, and D. J. Schoen
Genomic Mutation in Lines of Arabidopsis thaliana Exposed to Ultraviolet-B Radiation
Genetics, October 1, 2005; 171(2): 715 - 723.
[Abstract] [Full Text] [PDF]


Home page
Proc R Soc BHome page
T. A.F Long and A. Pischedda
Do female Drosophila melanogaster adaptively bias offspring sex ratios in relation to the age of their mate?
Proc R Soc B, September 7, 2005; 272(1574): 1781 - 1787.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. W. Drake, A. Bebenek, G. E. Kissling, and S. Peddada
Clusters of mutations from transient hypermutability
PNAS, September 6, 2005; 102(36): 12849 - 12854.
[Abstract] [Full Text] [PDF]


Home page
J HeredHome page
C. Salgado, B. Nieto, M. A. Toro, C. Lopez-Fanjul, and A. Garcia-Dorado
Inferences on the Role of Insertion in a Mutation Accumulation Experiment with Drosophila melanogaster Using RAPDs
J. Hered., September 1, 2005; 96(5): 576 - 581.
[Abstract] [Full Text] [PDF]


Home page
Phil Trans R Soc BHome page
T. Johnson and N. Barton
Theoretical models of selection and mutation on quantitative traits
Phil Trans R Soc B, July 29, 2005; 360(1459): 1411 - 1425.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
V. Furio, A. Moya, and R. Sanjuan
The cost of replication fidelity in an RNA virus
PNAS, July 19, 2005; 102(29): 10233 - 10237.
[Abstract] [Full Text] [PDF]