Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/64eef3cf5096683fea3cd51c3aff6b68.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
The 1.7 Kilogram Microchip:  Energy and Material Use in the Production of Semiconductor Devices | Environmental Science & Technology
    Article

    The 1.7 Kilogram Microchip:  Energy and Material Use in the Production of Semiconductor Devices
    Click to copy article linkArticle link copied!

    View Author Information
    United Nations University, 53-67 Jingumae 5-chome, Shibuya-ku, Tokyo, Japan, INSEAD, Boulevard de Constance, Fontainebleau, 77305 Cedex, France, and National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 24, 5504–5510
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es025643o
    Published October 25, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The scale of environmental impacts associated with the manufacture of microchips is characterized through analysis of material and energy inputs into processes in the production chain. The total weight of secondary fossil fuel and chemical inputs to produce and use a single 2-gram 32MB DRAM chip are estimated at 1600 g and 72 g, respectively. Use of water and elemental gases (mainly N2) in the fabrication stage are 32 000 and 700 g per chip, respectively. The production chain yielding silicon wafers from quartz uses 160 times the energy required for typical silicon, indicating that purification to semiconductor grade materials is energy intensive. Due to its extremely low-entropy, organized structure, the materials intensity of a microchip is orders of magnitude higher than that of “traditional” goods. Future analysis of semiconductor and other low entropy high-tech goods needs to include the use of secondary materials, especially for purification.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author phone:  81−3−5467−1352; fax:  81−3−3406−7246; e-mail:  [email protected].

     United Nations University.

     INSEAD.

    §

     National Science Foundation.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Section A, discussion comparing data sources on chemical use and emissions in semiconductor fabrication; section B, input/output data on wafer fabrication processes; section C, details of estimation of energy required for production of chemical inputs to fabrication of integrated circuits, and section D, reference tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 304 publications.

    1. Ravitej Venkataswamy, Lyle Trimble, Andrew McDonald, Douglas Nevers, Leticia Vazquez Bengochea, Andrew Carswell, Alan Rossner, Jihoon Seo. Environmental Impact Assessment of Chemical Mechanical Planarization Consumables: Challenges, Future Needs, and Perspectives. ACS Sustainable Chemistry & Engineering 2024, 12 (32) , 11841-11855. https://doi.org/10.1021/acssuschemeng.4c03195
    2. Matthieu Weber, Nils Boysen, Octavio Graniel, Abderrahime Sekkat, Christian Dussarrat, Paulo Wiff, Anjana Devi, David Muñoz-Rojas. Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Materials Au 2023, 3 (4) , 274-298. https://doi.org/10.1021/acsmaterialsau.3c00002
    3. Jing-Yuan Ma, Kai-Xuan Wang, Ming Ma, Yu Zhang. Magnetic Microsphere/Silica Nanoparticle Composite Structures for Switchable DNA Storage. ACS Applied Nano Materials 2022, 5 (10) , 15619-15628. https://doi.org/10.1021/acsanm.2c03686
    4. H. S. Khare, N. N. Gosvami, I. Lahouij, Z. B. Milne, J. B. McClimon, R. W. Carpick. Nanotribological Printing: A Nanoscale Additive Manufacturing Method. Nano Letters 2018, 18 (11) , 6756-6763. https://doi.org/10.1021/acs.nanolett.8b02505
    5. Hisashi Ichimiya, Masahiro Takinoue, Akito Fukui, Kohei Miura, Takeshi Yoshimura, Atsushi Ashida, Norifumi Fujimura, Daisuke Kiriya. Tuning Transition-Metal Dichalcogenide Field-Effect Transistors by Spontaneous Pattern Formation of an Ultrathin Molecular Dopant Film. ACS Nano 2018, 12 (10) , 10123-10129. https://doi.org/10.1021/acsnano.8b04914
    6. Joshua A. Warren, Matthew E. Riddle, Diane J. Graziano, Sujit Das, Venkata K. K. Upadhyayula, Eric Masanet, and Joe Cresko . Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet. Environmental Science & Technology 2015, 49 (17) , 10294-10302. https://doi.org/10.1021/acs.est.5b01627
    7. Eli Fahrenkrug and Stephen Maldonado . Electrochemical Liquid–Liquid–Solid (ec-LLS) Crystal Growth: A Low-Temperature Strategy for Covalent Semiconductor Crystal Growth. Accounts of Chemical Research 2015, 48 (7) , 1881-1890. https://doi.org/10.1021/acs.accounts.5b00158
    8. Suchol Savagatrup, Daniel Rodriquez, Adam D. Printz, Alexander B. Sieval, Jan C. Hummelen, and Darren J. Lipomi . [70]PCBM and Incompletely Separated Grades of Methanofullerenes Produce Bulk Heterojunctions with Increased Robustness for Ultra-Flexible and Stretchable Electronics. Chemistry of Materials 2015, 27 (11) , 3902-3911. https://doi.org/10.1021/acs.chemmater.5b00638
    9. Erinn G. Ryen, Callie W. Babbitt, and Eric Williams . Consumption-Weighted Life Cycle Assessment of a Consumer Electronic Product Community. Environmental Science & Technology 2015, 49 (4) , 2549-2559. https://doi.org/10.1021/es505121p
    10. Leanne M. Gilbertson, Ahmed A. Busnaina, Jacqueline A. Isaacs, Julie B. Zimmerman, and Matthew J. Eckelman . Life Cycle Impacts and Benefits of a Carbon Nanotube-Enabled Chemical Gas Sensor. Environmental Science & Technology 2014, 48 (19) , 11360-11368. https://doi.org/10.1021/es5006576
    11. Suchol Savagatrup, Adam D. Printz, Timothy F. O’Connor, Aliaksandr V. Zaretski, and Darren J. Lipomi . Molecularly Stretchable Electronics. Chemistry of Materials 2014, 26 (10) , 3028-3041. https://doi.org/10.1021/cm501021v
    12. Lindsay J. Dahlben, Matthew J. Eckelman, Ali Hakimian, Sivasubramanian Somu, and Jacqueline A. Isaacs . Environmental Life Cycle Assessment of a Carbon Nanotube-Enabled Semiconductor Device. Environmental Science & Technology 2013, 47 (15) , 8471-8478. https://doi.org/10.1021/es305325y
    13. Junsi Gu, Sean M. Collins, Azhar I. Carim, Xiaoguang Hao, Bart M. Bartlett, and Stephen Maldonado . Template-Free Preparation of Crystalline Ge Nanowire Film Electrodes via an Electrochemical Liquid–Liquid–Solid Process in Water at Ambient Pressure and Temperature for Energy Storage. Nano Letters 2012, 12 (9) , 4617-4623. https://doi.org/10.1021/nl301912f
    14. Azhar I. Carim, Sean M. Collins, Justin M. Foley, and Stephen Maldonado . Benchtop Electrochemical Liquid–Liquid–Solid Growth of Nanostructured Crystalline Germanium. Journal of the American Chemical Society 2011, 133 (34) , 13292-13295. https://doi.org/10.1021/ja205299w
    15. Koji Intlekofer, Bert Bras, Mark Ferguson. Energy Implications of Product Leasing. Environmental Science & Technology 2010, 44 (12) , 4409-4415. https://doi.org/10.1021/es9036836
    16. Matthew S. Branham and Timothy G. Gutowski. Deconstructing Energy Use in Microelectronics Manufacturing: An Experimental Case Study of a MEMS Fabrication Facility. Environmental Science & Technology 2010, 44 (11) , 4295-4301. https://doi.org/10.1021/es902388b
    17. Sarah B. Boyd, Arpad Horvath and David Dornfeld. Life-Cycle Energy Demand and Global Warming Potential of Computational Logic. Environmental Science & Technology 2009, 43 (19) , 7303-7309. https://doi.org/10.1021/es901514n
    18. Manabu Tanaka, Abhinav Rastogi, Gregory N. Toepperwein, Robert A. Riggleman, Nelson M. Felix, Juan J. de Pablo and Christopher K. Ober . Fluorinated Quaternary Ammonium Salts as Dissolution Aids for Polar Polymers in Environmentally Benign Supercritical Carbon Dioxide. Chemistry of Materials 2009, 21 (14) , 3125-3135. https://doi.org/10.1021/cm900406c
    19. Callie W. Babbitt, Ramzy Kahhat, Eric Williams and Gregory A. Babbitt . Evolution of Product Lifespan and Implications for Environmental Assessment and Management: A Case Study of Personal Computers in Higher Education. Environmental Science & Technology 2009, 43 (13) , 5106-5112. https://doi.org/10.1021/es803568p
    20. Stewart Hickey, Colin Fitzpatrick, Maurice O’Connell and Michael Johnson. Use Phase Signals to Promote Lifetime Extension for Windows PCs. Environmental Science & Technology 2009, 43 (7) , 2544-2549. https://doi.org/10.1021/es8020638
    21. Timothy G. Gutowski, Matthew S. Branham, Jeffrey B. Dahmus, Alissa J. Jones and Alexandre Thiriez, Dusan P. Sekulic. Thermodynamic Analysis of Resources Used in Manufacturing Processes. Environmental Science & Technology 2009, 43 (5) , 1584-1590. https://doi.org/10.1021/es8016655
    22. Eric Williams, Ramzy Kahhat, Braden Allenby, Edward Kavazanjian, Junbeum Kim and Ming Xu . Environmental, Social, and Economic Implications of Global Reuse and Recycling of Personal Computers. Environmental Science & Technology 2008, 42 (17) , 6446-6454. https://doi.org/10.1021/es702255z
    23. Nikhil Krishnan, Sarah Boyd, Ajay Somani, Sebastien Raoux, Daniel Clark and David Dornfeld . A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing. Environmental Science & Technology 2008, 42 (8) , 3069-3075. https://doi.org/10.1021/es071174k
    24. Stewart. W. Hickey and Colin Fitzpatrick. Combating Adverse Selection in Secondary PC Markets. Environmental Science & Technology 2008, 42 (8) , 3047-3052. https://doi.org/10.1021/es071706x
    25. Dorothy W. Skaf,, Sunita Kandula,, Lauren Harmonay,, Philip Shodder,, Carol A. Bessel, and, Randy D. Weinstein. Kinetics of the Reactions of Cu(0) and Cu2O in Hexanes or Condensed Carbon Dioxide by tert-Butyl Peracetate and 1,1,1-Trifluoro-2,4-pentanedione. Industrial & Engineering Chemistry Research 2006, 45 (26) , 8874-8882. https://doi.org/10.1021/ie0607651
    26. Andrew Dunbar,, Donna M. Omiatek,, Susan D. Thai,, Christopher E. Kendrex,, Laurel L. Grotzinger,, Walter J. Boyko,, Randy D. Weinstein,, Dorothy W. Skaf,, Carol A. Bessel,, Ginger M. Denison, and, Joseph M. DeSimone. Use of Substituted Bis(acetylacetone)ethylenediimine and Dialkyldithiocarbamate Ligands for Copper Chelation in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research 2006, 45 (26) , 8779-8787. https://doi.org/10.1021/ie060947v
    27. Randy D. Weinstein,, Laurel L. Grotzinger,, Patrick Salemo,, Donna M. Omiatek, and, Carol A. Bessel. Solubility of Several Short-Chain Lithium Dialkyldithiocarbamates in Liquid and Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2005, 50 (6) , 2088-2093. https://doi.org/10.1021/je0502952
    28. Eric Williams. Energy Intensity of Computer Manufacturing:  Hybrid Assessment Combining Process and Economic Input−Output Methods. Environmental Science & Technology 2004, 38 (22) , 6166-6174. https://doi.org/10.1021/es035152j
    29. Michael W. Toffel, , Arpad Horvath. Environmental Implications of Wireless Technologies:  News Delivery and Business Meetings. Environmental Science & Technology 2004, 38 (11) , 2961-2970. https://doi.org/10.1021/es035035o
    30. Erik N. Hoggan,, Devin Flowers,, Ke Wang,, Joseph M. DeSimone, and, Ruben G. Carbonell. Spin Coating of Photoresists Using Liquid Carbon Dioxide. Industrial & Engineering Chemistry Research 2004, 43 (9) , 2113-2122. https://doi.org/10.1021/ie0308543
    31. Farhang Shadman, , Terrence J. McManus. Comment on “The 1.7 Kilogram Microchip:  Energy and Material Use in the Production of Semiconductor Devices”. Environmental Science & Technology 2004, 38 (6) , 1915-1915. https://doi.org/10.1021/es030688q
    32. Eric D. Williams, , Robert U. Ayres, , Miriam Heller. Response to Comment on “The 1.7 Kilogram Microchip:  Energy and Material Use in the Production of Semiconductor Devices”. Environmental Science & Technology 2004, 38 (6) , 1916-1917. https://doi.org/10.1021/es049890z
    33. Cynthia F. Murphy,, George A. Kenig,, David T. Allen,, Jean-Philippe Laurent, and, David E. Dyer. Development of Parametric Material, Energy, and Emission Inventories for Wafer Fabrication in the Semiconductor Industry. Environmental Science & Technology 2003, 37 (23) , 5373-5382. https://doi.org/10.1021/es034434g
    34. Joseph Fiksel. Designing Resilient, Sustainable Systems. Environmental Science & Technology 2003, 37 (23) , 5330-5339. https://doi.org/10.1021/es0344819
    35. Eric J. Beckman. Green Chemical Processing Using CO2. Industrial & Engineering Chemistry Research 2003, 42 (8) , 1598-1602. https://doi.org/10.1021/ie0300530
    36. Sofia Sandhu, Ayoub Zumeit, Zhenyu Tian, Vincenzo Vinciguerra, Ravinder Dahiya. Semiconductor manufacturing wastewater challenges and the potential solutions via printed electronics. iScience 2025, 28 (10) , 113576. https://doi.org/10.1016/j.isci.2025.113576
    37. Prisca Viviani, Eugenio Gibertini, Andrea Ratti, Ilaria Gelmi, Laura Castoldi, Luca Magagnin. Enabling water-based EVA adhesives for solvent-free aerosol jet printing in microfabrication. Journal of Micromechanics and Microengineering 2025, 35 (8) , 085016. https://doi.org/10.1088/1361-6439/adfcdb
    38. Mostafa Radwan, Mervi Paulasto-Kröckel, Vesa Vuorinen. Cradle-to-Gate Life Cycle Assessment of Si IGBT and SiC MOSFET Power Modules. 2025, 1-5. https://doi.org/10.1109/SusTech63138.2025.11025776
    39. Irene Vogelaar. Sustainable AI. 2025https://doi.org/10.1093/9780198945215.003.0030
    40. Ling Chu, Yanqing Su, Xiangyu Yao, Peng Xu, Wenbin Liu. A Review of DNA Cryptography. Intelligent Computing 2025, 4 https://doi.org/10.34133/icomputing.0106
    41. Meserecordias Wilfred Lema. Managing the e-waste crisis in Africa: A mini-review of policies, practices, technologies and business model innovations. Waste Management & Research: The Journal for a Sustainable Circular Economy 2024, 9 https://doi.org/10.1177/0734242X241304321
    42. Tetsuji Onoue, Sakiko Hori, Yuki Tomimatsu, Manuel Rigo. A dilute sodium hydroxide technique for radiolarian extraction from cherts. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-63755-9
    43. Phillip Raffeck, Sven Posner, Peter Wägemann. CO 2 CoDe : Towards Carbon-Aware Hardware/Software Co-Design for Intermittently-Powered Embedded Systems. ACM SIGEnergy Energy Informatics Review 2024, 4 (5) , 127-133. https://doi.org/10.1145/3727200.3727219
    44. Levon Amatuni, Bernhard Steubing, Reinout Heijungs, Tales Yamamoto, José M. Mogollón. Deriving material composition of products using life cycle inventory databases. Journal of Industrial Ecology 2024, 28 (5) , 1060-1072. https://doi.org/10.1111/jiec.13538
    45. Yifei Pan, Wenyu Wang, Yuan Shui, Jack F. Murphy, Yan Yan Shery Huang. Fabrication, sustainability, and key performance indicators of bioelectronics via fiber building blocks. Cell Reports Physical Science 2024, 5 (8) , 101930. https://doi.org/10.1016/j.xcrp.2024.101930
    46. Gottlieb S. Oehrlein, Stephan M. Brandstadter, Robert L. Bruce, Jane P. Chang, Jessica C. DeMott, Vincent M. Donnelly, Rémi Dussart, Andreas Fischer, Richard A. Gottscho, Satoshi Hamaguchi, Masanobu Honda, Masaru Hori, Kenji Ishikawa, Steven G. Jaloviar, Keren J. Kanarik, Kazuhiro Karahashi, Akiteru Ko, Hiten Kothari, Nobuyuki Kuboi, Mark J. Kushner, Thorsten Lill, Pingshan Luan, Ali Mesbah, Eric Miller, Shoubhanik Nath, Yoshinobu Ohya, Mitsuhiro Omura, Chanhoon Park, John Poulose, Shahid Rauf, Makoto Sekine, Taylor G. Smith, Nathan Stafford, Theo Standaert, Peter L. G. Ventzek. Future of plasma etching for microelectronics: Challenges and opportunities. Journal of Vacuum Science & Technology B 2024, 42 (4) https://doi.org/10.1116/6.0003579
    47. Noémie Bidoul, Pauline Raux, Tom Van Aerschot, Alex Pip, Christian Renaux, Sébastien Faniel, Denis Flandre, Jean-Pierre Raskin. Process-Based Life Cycle Assessment of a Vanadium Dioxide Spiking Neuron. 2024, 1-7. https://doi.org/10.23919/EGG62010.2024.10631188
    48. Stéphanie H. Leclerc, Madhav G. Badami. Extended producer responsibility: An empirical investigation into municipalities' contributions to and perspectives on e‐waste management. Environmental Policy and Governance 2024, 34 (2) , 111-124. https://doi.org/10.1002/eet.2059
    49. David Flanigan, Kevin Robinson. Carbon Considerations for Systems Evolution. INSIGHT 2024, 27 (1) , 39-45. https://doi.org/10.1002/inst.12474
    50. Josh Lepawsky. Climate change induced water stress and future semiconductor supply chain risk. iScience 2024, 27 (2) , 108791. https://doi.org/10.1016/j.isci.2024.108791
    51. Kaushik Iyer, Per Wennhagea, Malin Åkermo. Life-cycle Assessment of a Composite Railway bogie frame. Procedia CIRP 2024, 122 , 988-993. https://doi.org/10.1016/j.procir.2024.01.134
    52. Wen‐Min Lu, Shih‐Fang Lo, Shiu‐Wan Hung, Jung Yo. Semiconductor industry supply chain productivity changes: Incorporating corporate green performances. Managerial and Decision Economics 2023, 44 (8) , 4232-4247. https://doi.org/10.1002/mde.3945
    53. M. Rizwan, A. Ayub, M. Sheeza, H. M. Naeem Ullah. Plasmonic Metamaterials. 2023, 261-285. https://doi.org/10.1002/9781394167074.ch12
    54. Friederike Hildebrandt, Maximilian Jung. Digital, grün, global gerecht. Forschungsjournal Soziale Bewegungen 2023, 36 (3) , 392-403. https://doi.org/10.1515/fjsb-2023-0035
    55. Xu Yang, Langwen Lai, Xiaoli Qiang, Ming Deng, Yuhao Xie, Xiaolong Shi, Zheng Kou. Towards Chinese text and DNA shift encoding scheme based on biomass plasmid storage. Frontiers in Bioinformatics 2023, 3 https://doi.org/10.3389/fbinf.2023.1276934
    56. Kyung-Taek Rim. Occupational exposure to mixtures and toxic pathways prediction for workers’ health. Molecular & Cellular Toxicology 2023, 19 (4) , 775-788. https://doi.org/10.1007/s13273-022-00306-1
    57. Lucas Barroso Spejo, Innocent Akor, Munaf Rahimo, Renato Amaral Minamisawa. Life-cycle energy demand comparison of medium voltage Silicon IGBT and Silicon Carbide MOSFET power semiconductor modules in railway traction applications. Power Electronic Devices and Components 2023, 6 , 100050. https://doi.org/10.1016/j.pedc.2023.100050
    58. Andrew Lininger, Akeshi Aththanayake, Jonathan Boyd, Omar Ali, Madhav Goel, Yangheng Jizhe, Michael Hinczewski, Giuseppe Strangi. Machine learning to optimize additive manufacturing for visible photonics. Nanophotonics 2023, 12 (14) , 2767-2778. https://doi.org/10.1515/nanoph-2022-0815
    59. Zesen Zhang, Leila Scola, Aaron Schulman. Investigating the Sustainability of the 5G Base Station Overhaul in the United States. 2023, 87-98. https://doi.org/10.1109/ICT4S58814.2023.00018
    60. Thibault Pirson, Thibault P. Delhaye, Alex G. Pip, Grégoire Le Brun, Jean-Pierre Raskin, David Bol. The Environmental Footprint of IC Production: Review, Analysis, and Lessons From Historical Trends. IEEE Transactions on Semiconductor Manufacturing 2023, 36 (1) , 56-67. https://doi.org/10.1109/TSM.2022.3228311
    61. Edoardo Baldini, Stefano Chessa, Antonio Brogi. Estimating the Environmental Impact of Green IoT Deployments. Sensors 2023, 23 (3) , 1537. https://doi.org/10.3390/s23031537
    62. Nick King, Aled Jones. Introduction. 2023, 1-31. https://doi.org/10.1007/978-3-031-46448-5_1
    63. T.E. Girish, Thara N. Sathyan, Varnana M. Kumar. Technological relevance and photovoltaic production potential of high-quality silica deposits on Mars. 2023, 433-441. https://doi.org/10.1016/B978-0-12-823300-9.00017-0
    64. Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality. Chinese Journal of Chemical Engineering 2023, 53 , 332-345. https://doi.org/10.1016/j.cjche.2022.01.014
    65. Tobias F. Poemsl, Afzal S. Siddiqui. Operational planning of distributed energy generation for a semiconductor fabrication plant. e & i Elektrotechnik und Informationstechnik 2022, 139 (8) , 662-672. https://doi.org/10.1007/s00502-022-01066-5
    66. Mohammad Rostami, Danial Jahani Sabet, Vahid Vatanpour. Fabrication of antifouling two-dimensional MoS2 layered PVDF membrane: Experimental and density functional theory calculation. Separation and Purification Technology 2022, 303 , 122226. https://doi.org/10.1016/j.seppur.2022.122226
    67. Prashant Nagapurkar, Sujit Das. Economic and embodied energy analysis of integrated circuit manufacturing processes. Sustainable Computing: Informatics and Systems 2022, 35 , 100771. https://doi.org/10.1016/j.suscom.2022.100771
    68. Barbara Mazzolai, Alessio Mondini, Emanuela Del Dottore, Laura Margheri, Federico Carpi, Koichi Suzumori, Matteo Cianchetti, Thomas Speck, Stoyan K Smoukov, Ingo Burgert, Tobias Keplinger, Gilberto De Freitas Siqueira, Felix Vanneste, Olivier Goury, Christian Duriez, Thrishantha Nanayakkara, Bram Vanderborght, Joost Brancart, Seppe Terryn, Steven I Rich, Ruiyuan Liu, Kenjiro Fukuda, Takao Someya, Marcello Calisti, Cecilia Laschi, Wenguang Sun, Gang Wang, Li Wen, Robert Baines, Sree Kalyan Patiballa, Rebecca Kramer-Bottiglio, Daniela Rus, Peer Fischer, Friedrich C Simmel, Andreas Lendlein. Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials 2022, 5 (3) , 032001. https://doi.org/10.1088/2399-7532/ac4c95
    69. Stéphanie H. Leclerc, Madhav G. Badami. Material circularity in large organizations: Action-research to shift information technology (IT) material flows. Journal of Cleaner Production 2022, 348 , 131333. https://doi.org/10.1016/j.jclepro.2022.131333
    70. Kyung-Taek Rim. Prevention of occupational diseases from chemicals due to development of the semiconductor industry. Toxicology and Environmental Health Sciences 2022, 14 (1) , 1-11. https://doi.org/10.1007/s13530-022-00123-y
    71. Caleb Scharf. Commentary: The rule of information. Physics Today 2022, 75 (3) , 10-11. https://doi.org/10.1063/PT.3.4951
    72. T.E. Girish, G.M. Anupama, G. Lakshmi. Automated electronic integrated circuit manufacturing on the Moon and Mars: Possibilities of the development of bio-inspired semiconductor technologies for space applications. 2022, 459-475. https://doi.org/10.1016/B978-0-12-821074-1.00009-8
    73. Fang Cao, Zengguo Tian, Baozhu Jiang, Hongshuai Zhang, Heng Chen, Xuguang Zhu. Batch Wafer-Identification Recognition Based on Machine Learning. 2021, 145-149. https://doi.org/10.1109/CCISP52774.2021.9639314
    74. Adrian Smith, Mariano Fressoli. Post-automation. Futures 2021, 132 , 102778. https://doi.org/10.1016/j.futures.2021.102778
    75. Kyung-Taek Rim. Application of the adverse outcome pathway framework to predict the toxicity of chemicals in the semiconductor manufacturing industry. Molecular & Cellular Toxicology 2021, 17 (3) , 325-345. https://doi.org/10.1007/s13273-021-00139-4
    76. A. Palomino, J. Marty, S. Auffret, I. Joumard, R.C. Sousa, I.L. Prejbeanu, B. Ageron, B. Dieny. Evaluating critical metals contained in spintronic memory with a particular focus on Pt substitution for improved sustainability. Sustainable Materials and Technologies 2021, 28 , e00270. https://doi.org/10.1016/j.susmat.2021.e00270
    77. Jeffery L. Coffer, Leigh T. Canham. Nanoporous Silicon as a Green, High-Tech Educational Tool. Nanomaterials 2021, 11 (2) , 553. https://doi.org/10.3390/nano11020553
    78. Frank Engelmann, Alois Breiing, Timothy Gutowski. Engineering Design. 2021, 629-682. https://doi.org/10.1007/978-3-030-47035-7_16
    79. Rickard Arvidsson. Inventory Indicators in Life Cycle Assessment. 2021, 171-190. https://doi.org/10.1007/978-3-030-62270-1_8
    80. Benoit Cushman-Roisin, Bruna Tanaka Cremonini. Electronics and computers. 2021, 93-116. https://doi.org/10.1016/B978-0-12-822958-3.00010-8
    81. Fang Cao, Zengguo Tian, Baozhu Jiang, Hongshuai Zhang, Heng Chen, Xuguang Zhu. 3D Model Registration-Based Batch Wafer-ID Recognition Algorithm. IEEE Access 2021, 9 , 150283-150291. https://doi.org/10.1109/ACCESS.2021.3125735
    82. Sujit Das, Elizabeth Mao. The global energy footprint of information and communication technology electronics in connected Internet-of-Things devices. Sustainable Energy, Grids and Networks 2020, 24 , 100408. https://doi.org/10.1016/j.segan.2020.100408
    83. Josh Lepawsky. Towards a World of Fixers Examining barriers and enablers of widely deployed third-party repair for computing within limits. 2020, 314-320. https://doi.org/10.1145/3401335.3401816
    84. Carlos F. Blanco, Stefano Cucurachi, Jeroen B. Guinée, Martina G. Vijver, Willie J.G.M. Peijnenburg, Roman Trattnig, Reinout Heijungs. Assessing the sustainability of emerging technologies: A probabilistic LCA method applied to advanced photovoltaics. Journal of Cleaner Production 2020, 259 , 120968. https://doi.org/10.1016/j.jclepro.2020.120968
    85. N. A. Zhilnikova. Methodology of ensuring ecological safety of radio-electronic and instrument-making production in territorial natural production complexes. Radio industry (Russia) 2020, 30 (1) , 54-62. https://doi.org/10.21778/2413-9599-2020-30-1-54-62
    86. Miguel Vazquez-Pufleau, Martin Yamane. Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth. Chemical Engineering Science 2020, 211 , 115230. https://doi.org/10.1016/j.ces.2019.115230
    87. Hervé Borrion, Paul Ekblom, Dalal Alrajeh, Aiduan Li Borrion, Aidan Keane, Daniel Koch, Timothy Mitchener-Nissen, Sonia Toubaline. The Problem with Crime Problem-Solving: Towards a Second Generation Pop?. The British Journal of Criminology 2020, 60 (1) , 219-240. https://doi.org/10.1093/bjc/azz029
    88. Weixuan Wang, Jan F. Adamowski, Chunfang Liu, Yujia Liu, Yongkai Zhang, Xueyan Wang, Haohai Su, Jianjun Cao. The Impact of Virtual Water on Sustainable Development in Gansu Province. Applied Sciences 2020, 10 (2) , 586. https://doi.org/10.3390/app10020586
    89. Jan Steinkoenig, Resat Aksakal, Filip Du Prez. Molecular access to multi-dimensionally encoded information. European Polymer Journal 2019, 120 , 109260. https://doi.org/10.1016/j.eurpolymj.2019.109260
    90. Miguel Vazquez-Pufleau, Martin Yamane. WITHDRAWN: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth. Chemical Engineering Science: X 2019, 5 , 100036. https://doi.org/10.1016/j.cesx.2019.100036
    91. Anders Nordelöf. A scalable life cycle inventory of an automotive power electronic inverter unit—part II: manufacturing processes. The International Journal of Life Cycle Assessment 2019, 24 (4) , 694-711. https://doi.org/10.1007/s11367-018-1491-3
    92. Hampus André, Maria Ljunggren Söderman, Anders Nordelöf. Resource and environmental impacts of using second-hand laptop computers: A case study of commercial reuse. Waste Management 2019, 88 , 268-279. https://doi.org/10.1016/j.wasman.2019.03.050
    93. Barbara V. Kasulaitis, Callie W. Babbitt, Andrew K. Krock. Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem. Journal of Industrial Ecology 2019, 23 (1) , 119-132. https://doi.org/10.1111/jiec.12756
    94. Carlos Alvarez-Pereira. Anticipations of Digital Sustainability: Self-Delusions, Disappointments and Expectations. 2019, 99-120. https://doi.org/10.1007/978-3-030-03623-2_7
    95. Salman A. Abbasi, Ahmed Busnaina, Jacqueline A. Isaacs. Cumulative Energy Demand for Printing Nanoscale Electronics. Procedia CIRP 2019, 80 , 298-303. https://doi.org/10.1016/j.procir.2018.12.018
    96. Shumail Mazahir, Vedat Verter, Tamer Boyaci, Luk N. Van Wassenhove. Did Europe Move in the Right Direction on E‐waste Legislation?. Production and Operations Management 2019, 28 (1) , 121-139. https://doi.org/10.1111/poms.12894
    97. Olivier Vidal. Ressources minérales, progrès technologique et croissance. Temporalités 2018, (28) https://doi.org/10.4000/temporalites.5677
    98. Walter Den, Chih-Hao Chen, Yung-Chien Luo. Revisiting the water-use efficiency performance for microelectronics manufacturing facilities: Using Taiwan’s Science Parks as a case study. Water-Energy Nexus 2018, 1 (2) , 116-133. https://doi.org/10.1016/j.wen.2018.12.002
    99. Alexander Cimprich, Karim S. Karim, Steven B. Young. Extending the geopolitical supply risk method: material “substitutability” indicators applied to electric vehicles and dental X-ray equipment. The International Journal of Life Cycle Assessment 2018, 23 (10) , 2024-2042. https://doi.org/10.1007/s11367-017-1418-4
    100. Erinn G. Ryen, Gabrielle Gaustad, Callie W. Babbitt, Gregory Babbitt. Ecological foraging models as inspiration for optimized recycling systems in the circular economy. Resources, Conservation and Recycling 2018, 135 , 48-57. https://doi.org/10.1016/j.resconrec.2017.08.006
    Load more citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2002, 36, 24, 5504–5510
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es025643o
    Published October 25, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    7037

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.