Notice: file_put_contents(): Write of 98673 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry - PMC Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1963 Jul;3(4):323–353. doi: 10.1016/s0006-3495(63)86824-1

Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry

Peter Mazur
PMCID: PMC1366450  PMID: 13934216

Abstract

Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CONWAY E. J., ARMSTRONG W. M. The total intracellular concentration of solutes in yeast and other plant cells and the distensibility of the plant-cell wall. Biochem J. 1961 Dec;81:631–639. doi: 10.1042/bj0810631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CONWAY E. J., DOWNEY M. An outer metabolic region of the yeast cell. Biochem J. 1950 Sep;47(3):347–355. doi: 10.1042/bj0470347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FALCONE G., NICKERSON W. J. Cell-wall mannan-protein of baker's yeast. Science. 1956 Aug 10;124(3215):272–273. doi: 10.1126/science.124.3215.272-a. [DOI] [PubMed] [Google Scholar]
  4. HASHIMOTO T., CONTI S. F., NAYLOR H. B. Studies of the fine structure of microorganisms. IV. Observations on budding Saccharomyces cerevisiae by light and electron microscopy. J Bacteriol. 1959 Mar;77(3):344–354. doi: 10.1128/jb.77.3.344-354.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MAZUR P. Physical and temporal factors involved in the death of yeast at subzero temperatures. Biophys J. 1961 Jan;1:247–264. doi: 10.1016/s0006-3495(61)86887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MAZUR P. Physical factors implicated in the death of microorganisms at subzero temperatures. Ann N Y Acad Sci. 1960 Apr 13;85:610–629. doi: 10.1111/j.1749-6632.1960.tb49986.x. [DOI] [PubMed] [Google Scholar]
  7. VITOLS E., NORTH R. J., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell. J Biophys Biochem Cytol. 1961 Mar;9:689–699. doi: 10.1083/jcb.9.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES