Notice: file_put_contents(): Write of 274431 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Quantitative Determination of Fluorotelomer Sulfonates in Groundwater by LC MS/MS | Environmental Science & Technology
    Article

    Quantitative Determination of Fluorotelomer Sulfonates in Groundwater by LC MS/MS
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
    Other Access Options

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2004, 38, 6, 1828–1835
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es035031j
    Published February 4, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Aqueous film-forming foams (AFFF) are complex mixtures containing fluorocarbon- and hydrocarbon-based surfactants that are used to fight hydrocarbon-fueled fires. The military is the largest consumer of AFFF in the United States, and fire-training activities conducted at military bases have led to groundwater contamination by unspent fuels and AFFF chemicals. A direct-injection, liquid-chromatography tandem mass spectrometry (LC MS/MS) method was developed to quantify a suite of fluorotelomer sulfonate surfactants in groundwater collected from military bases where fire-training activities were conducted. The 4:2, 6:2, and 8:2 fluorotelomer sulfonates were detected and quantified in groundwater from two of the three military bases. The total fluorotelomer sulfonate concentrations observed at Wurtsmith AFB, MI, and Tyndall AFB, FL, ranged respectively from below quantitation (≤0.60) to 182 μg/L and from 1100 to 14 600 μg/L. Analyses of a fluorotelomer-based AFFF concentrate by negative ion fast atom bombardment/mass spectrometry and LC MS/MS analyses indicate that the AFFF concentrate contains only a small amount of fluorotelomer sulfonates and that fluoroalkylthioamido sulfonates are the main anionic fluorosurfactant in the mixtures. More research is needed to determine the fate of fluoroalkylthioamido sulfonates in the environment.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry.

    *

     Corresponding author phone:  (541)737-2265; fax:  (541)737-0497; e-mail:  [email protected].

     Department of Environmental and Molecular Toxicology.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 323 publications.

    1. Md G. Kabir, Zhiwen Tang, Xiqian Zhang, Frederic Coulon, Andreas Tiehm, Xin Song. Metatranscriptomic Insights into Aerobic Biotransformation of 6:2 Fluorotelomer Sulfonate by an Enrichment Culture under Sulfur-Limiting Conditions. Environmental Science & Technology 2025, 59 (35) , 18722-18734. https://doi.org/10.1021/acs.est.5c05531
    2. Wenbo You, Kejian Li, Qiuyue Ge, Yangyang Liu, Wei Wang, Haiping Xiong, Jianpeng Ao, Jilun Wang, Le Yang, Runbo Wang, Tingting Huang, Shiyi Wang, Huan Liu, Minbiao Ji, Liwu Zhang. Breaking the Forever Bonds: Interface-Enhanced Superoxide Chemistry for Efficient PFOA Degradation. Environmental Science & Technology 2025, 59 (35) , 19068-19080. https://doi.org/10.1021/acs.est.5c07029
    3. Junyoung Park, Donghyun Kim, Dongyun Kim, Jihyeun Jung, Kyung-Duk Zoh, Changha Lee, Yongju Choi, Jong Kwon Choe. Development of an Aptamer-Based qPCR Method for the Selective and Rapid Picomolar-Level Detection of Perfluorooctanesulfonic Acid in Water. Environmental Science & Technology 2025, 59 (32) , 17247-17257. https://doi.org/10.1021/acs.est.5c04730
    4. Jacopo Cogorno, Navid Ahmadi, Muhammad Muniruzzaman, Massimo Rolle. Electrostatic and Chemical Interplay between Air–Water and Mineral–Water Interfaces during PFOS Transport in Unsaturated Porous Media. Environmental Science & Technology 2025, 59 (15) , 7634-7645. https://doi.org/10.1021/acs.est.4c11920
    5. Meng Ji, Christos Christodoulatos, Qiantao Shi, Bo Zhao, Benjamin Smolinski, Steven Sheets, George Korfiatis, Xiaoguang Meng. Kinetic and Mechanism Study of PFOS Removal by Microscale Zero-Valent Iron from Water. Environmental Science & Technology 2025, 59 (12) , 6297-6306. https://doi.org/10.1021/acs.est.4c12301
    6. Jiazheng Sun, Yanna Liu, Linlin Yao, Yunhe Guo, Chenxi Ma, Tongtong Xiang, Zheyu Cheng, Yamin Deng, Xianjun Xie, Guangbo Qu, Jianbo Shi, Guibin Jiang, Yanxin Wang. Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas. Environmental Science & Technology 2025, 59 (5) , 2722-2731. https://doi.org/10.1021/acs.est.4c09020
    7. Fatema Tuj Jahura, Nur-Us-Shafa Mazumder, Md Tanjim Hossain, Arash Kasebi, Arjunsing Girase, R. Bryan Ormond. Exploring the Prospects and Challenges of Fluorine-Free Firefighting Foams (F3) as Alternatives to Aqueous Film-Forming Foams (AFFF): A Review. ACS Omega 2024, 9 (36) , 37430-37444. https://doi.org/10.1021/acsomega.4c03673
    8. Du Chen, Xiaohong Hu, Chaohuang Chen, Yiman Gao, Qianhai Zhou, Xia Feng, Xinhua Xu, Daohui Lin, Jiang Xu. Impacts of Perfluoroalkyl Substances on Aqueous and Nonaqueous Phase Liquid Dechlorination by Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology 2024, 58 (25) , 11193-11202. https://doi.org/10.1021/acs.est.4c04466
    9. Anthony C. Umeh, Ravi Naidu. Dynamic Column Studies of Multicomponent PFAS Sequestration Facilitated by Four Contrasting Injectable Adsorbent Suspensions and Associated PFAS Release in Simulated Groundwater. ACS ES&T Water 2024, 4 (6) , 2667-2678. https://doi.org/10.1021/acsestwater.4c00159
    10. Malvika Dutt, Adriana Arigò, Giorgio Famiglini, Giovanni Zappia, Pierangela Palma, Achille Cappiello. Exploring Negative Chemical Ionization of Per- and Polyfluoroalkyl Substances via a Liquid Electron Ionization LC-MS Interface. Journal of the American Society for Mass Spectrometry 2024, 35 (5) , 890-901. https://doi.org/10.1021/jasms.3c00432
    11. Xu Xu, Muyao Ma, Xinyue Zhou, Xin Zhao, Daming Feng, Lei Zhang. Portable Hydrogel Kits Made with Bimetallic Nanozymes for Point-of-Care Testing of Perfluorooctanesulfonate. ACS Applied Materials & Interfaces 2024, 16 (13) , 15959-15969. https://doi.org/10.1021/acsami.4c00844
    12. Yibin Sun, Song Tang, Enrui Li, Chao Wang, Hong Chang, Yixuan Huang, Yi Yang, Ling Jiao, Wenyan Yan, Yifu Lu, Yi Wan. Identification of Sulfur-Containing Chlorinated Paraffin Structural Analogues in Human Serum: Origination from Biotransformation or Bioaccumulation?. Environmental Science & Technology 2024, 58 (7) , 3462-3471. https://doi.org/10.1021/acs.est.3c10056
    13. Fatemeh Kazemi, Aleksey Khlyupin, Reza Azin, Shahriar Osfouri, Arash Khosravi, Mohammad Sedaghat, Yousef Kazemzadeh, Kirill M. Gerke, Marina V. Karsanina. Wettability Alteration in Gas Condensate Reservoirs: A Critical Review of the Opportunities and Challenges. Energy & Fuels 2024, 38 (3) , 1539-1565. https://doi.org/10.1021/acs.energyfuels.3c03515
    14. Jacopo Cogorno, Massimo Rolle. Impact of Variable Water Chemistry on PFOS-Goethite Interactions: Experimental Evidence and Surface Complexation Modeling. Environmental Science & Technology 2024, 58 (3) , 1731-1740. https://doi.org/10.1021/acs.est.3c09501
    15. Rebecca B. Clark, Dane C. Wagner, Dylan T. Holden, Joseph J. P. Roberts, Emiko Zumbro, Lindsey Goodnight, Kathy T. Huynh, Ryan B. Green, Jamie A. Grove, Jeffrey E. Dick. PFAS Electroanalysis in Low-Oxygen River Water Using Electrogenerated Dioxygen. Environmental Science & Technology 2023, 57 (51) , 21815-21822. https://doi.org/10.1021/acs.est.3c03967
    16. Ehsan Banayan Esfahani, Fatemeh Asadi Zeidabadi, Madjid Mohseni. Vacuum-UV Radiation Capable of Catalyst-Free Decomposition of 6:2 FTSA: The Transformation Mechanism and Impacts of the Water Matrix. ACS ES&T Water 2023, 3 (11) , 3614-3625. https://doi.org/10.1021/acsestwater.3c00364
    17. William P. Fagan, Shannon R. Thayer, Linda K. Weavers. Kinetics and Mechanism of Ultrasonic Defluorination of Fluorotelomer Sulfonates. The Journal of Physical Chemistry A 2023, 127 (30) , 6309-6319. https://doi.org/10.1021/acs.jpca.3c03011
    18. Yao Cheng, Qi An, Heshan Qi, Rui Li, Weiping Liu, Baojing Gu, Kai Liu. Temporal Trends of Legacy and Emerging PFASs from 2011 to 2021 in Agricultural Soils of Eastern China: Impacts of the Stockholm Convention. Environmental Science & Technology 2023, 57 (25) , 9277-9286. https://doi.org/10.1021/acs.est.2c07873
    19. Shenhua Qian, Hongying Lu, Tiantian Xiong, Yue Zhi, Gabriel Munoz, Chuhui Zhang, Zhengwei Li, Caihong Liu, Wei Li, Xiaoming Wang, Qiang He. Bioaccumulation of Per- and Polyfluoroalkyl Substances (PFAS) in Ferns: Effect of PFAS Molecular Structure and Plant Root Characteristics. Environmental Science & Technology 2023, 57 (11) , 4443-4453. https://doi.org/10.1021/acs.est.2c06883
    20. Sarah Balgooyen, Christina K. Remucal. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. Environmental Science & Technology 2023, 57 (1) , 244-254. https://doi.org/10.1021/acs.est.2c06600
    21. Ziren Wan, Lifeng Cao, Wan Huang, Di Zheng, Guanghe Li, Fang Zhang. Enhanced Electrochemical Destruction of Perfluorooctanoic Acid (PFOA) Aided by Overlooked Cathodically Produced Bubbles. Environmental Science & Technology Letters 2023, 10 (1) , 111-116. https://doi.org/10.1021/acs.estlett.2c00897
    22. Raul Tenorio, Andrew C. Maizel, Charles E. Schaefer, Christopher P. Higgins, Timothy J. Strathmann. Application of High-Resolution Mass Spectrometry to Evaluate UV-Sulfite-Induced Transformations of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF). Environmental Science & Technology 2022, 56 (20) , 14774-14787. https://doi.org/10.1021/acs.est.2c03228
    23. Shih-Hung Yang, Libo Shan, Kung-Hui Chu. Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. Environmental Science & Technology 2022, 56 (15) , 10721-10731. https://doi.org/10.1021/acs.est.2c01867
    24. Thi Minh Hong Nguyen, Jennifer Bräunig, Rai S. Kookana, Sarit L. Kaserzon, Emma R. Knight, Hoang Nhat Phong Vo, Shervin Kabiri, Divina A. Navarro, Charles Grimison, Nicole Riddell, Christopher P. Higgins, Michael J. McLaughlin, Jochen F. Mueller. Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology 2022, 56 (14) , 10030-10041. https://doi.org/10.1021/acs.est.2c00401
    25. Yinghao Wen, Ángel Rentería-Gómez, Gregory S. Day, Mallory F. Smith, Tian-Hao Yan, Ray Osman K. Ozdemir, Osvaldo Gutierrez, Virender K. Sharma, Xingmao Ma, Hong-Cai Zhou. Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal–Organic Frameworks: Key Insights into the Degradation Mechanisms. Journal of the American Chemical Society 2022, 144 (26) , 11840-11850. https://doi.org/10.1021/jacs.2c04341
    26. Honghong Chen, Wenhui Qiu, Xuanjun Yang, Fangyi Chen, Jiaying Chen, Liang Tang, Hanbing Zhong, Jason T. Magnuson, Chunmiao Zheng, Elvis Genbo Xu. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. Environmental Science & Technology 2022, 56 (12) , 8438-8448. https://doi.org/10.1021/acs.est.1c08875
    27. Min Liu, Gabriel Munoz, Sung Vo Duy, Sébastien Sauvé, Jinxia Liu. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Environmental Science & Technology 2022, 56 (2) , 885-895. https://doi.org/10.1021/acs.est.1c04798
    28. Yanyan Zhang, Jinxia Liu, Subhasis Ghoshal, Audrey Moores. Density Functional Theory Calculations Decipher Complex Reaction Pathways of 6:2 Fluorotelomer Sulfonate to Perfluoroalkyl Carboxylates Initiated by Hydroxyl Radical. Environmental Science & Technology 2021, 55 (24) , 16655-16664. https://doi.org/10.1021/acs.est.1c05549
    29. Joseph A. Charbonnet, Alix E. Rodowa, Nayantara T. Joseph, Jennifer L. Guelfo, Jennifer A. Field, Gerrad D. Jones, Christopher P. Higgins, Damian E. Helbling, Erika F. Houtz. Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques. Environmental Science & Technology 2021, 55 (11) , 7237-7245. https://doi.org/10.1021/acs.est.0c08506
    30. Yida Fang, Anderson Ellis, Youn Jeong Choi, Treavor H. Boyer, Christopher P. Higgins, Charles E. Schaefer, Timothy J. Strathmann. Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) Using Ion-Exchange and Nonionic Resins. Environmental Science & Technology 2021, 55 (8) , 5001-5011. https://doi.org/10.1021/acs.est.1c00769
    31. Sarah Van Glubt, Mark L. Brusseau. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Environmental Science & Technology 2021, 55 (6) , 3706-3715. https://doi.org/10.1021/acs.est.0c07355
    32. Shilai Hao, Youn-Jeong Choi, Boran Wu, Christopher P. Higgins, Rula Deeb, Timothy J. Strathmann. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. Environmental Science & Technology 2021, 55 (5) , 3283-3295. https://doi.org/10.1021/acs.est.0c06906
    33. Konstantinos Kostarelos, Pushpesh Sharma, Emerson Christie, Thomas Wanzek, Jennifer Field. Viscous Microemulsions of Aqueous Film-Forming Foam (AFFF) and Jet Fuel A Inhibit Infiltration and Subsurface Transport. Environmental Science & Technology Letters 2021, 8 (2) , 142-147. https://doi.org/10.1021/acs.estlett.0c00868
    34. Bridger J. Ruyle, Colin P. Thackray, James P. McCord, Mark J. Strynar, Kevin A. Mauge-Lewis, Suzanne E. Fenton, Elsie M. Sunderland. Reconstructing the Composition of Per- and Polyfluoroalkyl Substances in Contemporary Aqueous Film-Forming Foams. Environmental Science & Technology Letters 2021, 8 (1) , 59-65. https://doi.org/10.1021/acs.estlett.0c00798
    35. Rebecca B. Clark, Jeffrey E. Dick. Electrochemical Sensing of Perfluorooctanesulfonate (PFOS) Using Ambient Oxygen in River Water. ACS Sensors 2020, 5 (11) , 3591-3598. https://doi.org/10.1021/acssensors.0c01894
    36. Samantha M. Hall, Sharyle Patton, Myrto Petreas, Sharon Zhang, Allison L. Phillips, Kate Hoffman, Heather M. Stapleton. Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. Environmental Science & Technology 2020, 54 (22) , 14558-14567. https://doi.org/10.1021/acs.est.0c04869
    37. Matthew W. Glasscott, Kathryn J. Vannoy, Rezvan Kazemi, Matthew D. Verber, Jeffrey E. Dick. μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water. Environmental Science & Technology Letters 2020, 7 (7) , 489-495. https://doi.org/10.1021/acs.estlett.0c00341
    38. Yejin Liang, Soyoung Kim, Eunmok Yang, Heechul Choi. Omni-Directional Protected Nanofiber Membranes by Surface Segregation of PDMS-Terminated Triblock Copolymer for High-Efficiency Oil/Water Emulsion Separation. ACS Applied Materials & Interfaces 2020, 12 (22) , 25324-25333. https://doi.org/10.1021/acsami.0c05559
    39. Yanyan Zhang, Jinxia Liu, Audrey Moores, Subhasis Ghoshal. Transformation of 6:2 Fluorotelomer Sulfonate by Cobalt(II)-Activated Peroxymonosulfate. Environmental Science & Technology 2020, 54 (7) , 4631-4640. https://doi.org/10.1021/acs.est.9b07113
    40. Raj Kamal Singh, Nicholas Multari, Chase Nau-Hix, Richard H. Anderson, Stephen D. Richardson, Thomas M. Holsen, Selma Mededovic Thagard. Rapid Removal of Poly- and Perfluorinated Compounds from Investigation-Derived Waste (IDW) in a Pilot-Scale Plasma Reactor. Environmental Science & Technology 2019, 53 (19) , 11375-11382. https://doi.org/10.1021/acs.est.9b02964
    41. Mark L. Brusseau, Naima Khan, Yake Wang, Ni Yan, Sarah Van Glubt, Kenneth C. Carroll. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Environmental Science & Technology 2019, 53 (18) , 10654-10664. https://doi.org/10.1021/acs.est.9b02343
    42. Yanyan Zhang, Audrey Moores, Jinxia Liu, Subhasis Ghoshal. New Insights into the Degradation Mechanism of Perfluorooctanoic Acid by Persulfate from Density Functional Theory and Experimental Data. Environmental Science & Technology 2019, 53 (15) , 8672-8681. https://doi.org/10.1021/acs.est.9b00797
    43. Erika Houtz, Miaomiao Wang, June-Soo Park. Identification and Fate of Aqueous Film Forming Foam Derived Per- and Polyfluoroalkyl Substances in a Wastewater Treatment Plant. Environmental Science & Technology 2018, 52 (22) , 13212-13221. https://doi.org/10.1021/acs.est.8b04028
    44. Charles E. Schaefer, Sarah Choyke, P. Lee Ferguson, Christina Andaya, Aniela Burant, Andrew Maizel, Timothy J. Strathmann, Christopher P. Higgins. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams. Environmental Science & Technology 2018, 52 (18) , 10689-10697. https://doi.org/10.1021/acs.est.8b02726
    45. Yanyan Zhang, Yue Zhi, Jinxia Liu, Subhasis Ghoshal. Sorption of Perfluoroalkyl Acids to Fresh and Aged Nanoscale Zerovalent Iron Particles. Environmental Science & Technology 2018, 52 (11) , 6300-6308. https://doi.org/10.1021/acs.est.8b00487
    46. Shan Yi, Katie C. Harding-Marjanovic, Erika F. Houtz, Ying Gao, Jennifer E. Lawrence, Rita V. Nichiporuk, Anthony T. Iavarone, Wei-Qin Zhuang, Martin Hansen, Jennifer A. Field, David L. Sedlak, Lisa Alvarez-Cohen. Biotransformation of AFFF Component 6:2 Fluorotelomer Thioether Amido Sulfonate Generates 6:2 Fluorotelomer Thioether Carboxylate under Sulfate-Reducing Conditions. Environmental Science & Technology Letters 2018, 5 (5) , 283-288. https://doi.org/10.1021/acs.estlett.8b00148
    47. Saerom Park, Chloe de Perre, and Linda S. Lee . Alternate Reductants with VB12 to Transform C8 and C6 Perfluoroalkyl Sulfonates: Limitations and Insights into Isomer-Specific Transformation Rates, Products and Pathways. Environmental Science & Technology 2017, 51 (23) , 13869-13877. https://doi.org/10.1021/acs.est.7b03744
    48. Lisa A. D’Agostino and Scott A. Mabury . Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environmental Science & Technology 2017, 51 (23) , 13603-13613. https://doi.org/10.1021/acs.est.7b03994
    49. Krista A. Barzen-Hanson, Shannon E. Davis, Markus Kleber, and Jennifer A. Field . Sorption of Fluorotelomer Sulfonates, Fluorotelomer Sulfonamido Betaines, and a Fluorotelomer Sulfonamido Amine in National Foam Aqueous Film-Forming Foam to Soil. Environmental Science & Technology 2017, 51 (21) , 12394-12404. https://doi.org/10.1021/acs.est.7b03452
    50. Sandra Mejia-Avendaño, Gabriel Munoz, Sung Vo Duy, Mélanie Desrosiers, Paul Benoı̂t, Sébastien Sauvé, and Jinxia Liu . Novel Fluoroalkylated Surfactants in Soils Following Firefighting Foam Deployment During the Lac-Mégantic Railway Accident. Environmental Science & Technology 2017, 51 (15) , 8313-8323. https://doi.org/10.1021/acs.est.7b02028
    51. Xin Xiao, Bridget A. Ulrich, Baoliang Chen, and Christopher P. Higgins . Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Environmental Science & Technology 2017, 51 (11) , 6342-6351. https://doi.org/10.1021/acs.est.7b00970
    52. Andrea K. Weber, Larry B. Barber, Denis R. LeBlanc, Elsie M. Sunderland, and Chad D. Vecitis . Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts. Environmental Science & Technology 2017, 51 (8) , 4269-4279. https://doi.org/10.1021/acs.est.6b05573
    53. Krista A. Barzen-Hanson, Simon C. Roberts, Sarah Choyke, Karl Oetjen, Alan McAlees, Nicole Riddell, Robert McCrindle, P. Lee Ferguson, Christopher P. Higgins, and Jennifer A. Field . Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environmental Science & Technology 2017, 51 (4) , 2047-2057. https://doi.org/10.1021/acs.est.6b05843
    54. Johnsie R. Lang, B. McKay Allred, Graham F. Peaslee, Jennifer A. Field, and Morton A. Barlaz . Release of Per- and Polyfluoroalkyl Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. Environmental Science & Technology 2016, 50 (10) , 5024-5032. https://doi.org/10.1021/acs.est.5b06237
    55. Katie C. Harding-Marjanovic, Shan Yi, Tess S. Weathers, Jonathan O. Sharp, David L. Sedlak, and Lisa Alvarez-Cohen . Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community. Environmental Science & Technology 2016, 50 (7) , 3352-3361. https://doi.org/10.1021/acs.est.5b04773
    56. Hui Lin, Yujuan Wang, Junfeng Niu, Zhihan Yue, and Qingguo Huang . Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation. Environmental Science & Technology 2015, 49 (17) , 10562-10569. https://doi.org/10.1021/acs.est.5b02092
    57. Katie C. Harding-Marjanovic, Erika F. Houtz, Shan Yi, Jennifer A. Field, David L. Sedlak, and Lisa Alvarez-Cohen . Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. Environmental Science & Technology 2015, 49 (13) , 7666-7674. https://doi.org/10.1021/acs.est.5b01219
    58. Fei Wang, Xingwen Lu, Xiao-yan Li, and Kaimin Shih . Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment. Environmental Science & Technology 2015, 49 (9) , 5672-5680. https://doi.org/10.1021/es506234b
    59. Krista A. Barzen-Hanson and Jennifer A. Field . Discovery and Implications of C2 and C3 Perfluoroalkyl Sulfonates in Aqueous Film-Forming Foams and Groundwater. Environmental Science & Technology Letters 2015, 2 (4) , 95-99. https://doi.org/10.1021/acs.estlett.5b00049
    60. Meghan E. McGuire, Charles Schaefer, Trenton Richards, Will J. Backe, Jennifer A. Field, Erika Houtz, David L. Sedlak, Jennifer L. Guelfo, Assaf Wunsch, and Christopher P. Higgins . Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a Former Firefighter Training Area. Environmental Science & Technology 2014, 48 (12) , 6644-6652. https://doi.org/10.1021/es5006187
    61. Lisa A. D’Agostino and Scott A. Mabury . Identification of Novel Fluorinated Surfactants in Aqueous Film Forming Foams and Commercial Surfactant Concentrates. Environmental Science & Technology 2014, 48 (1) , 121-129. https://doi.org/10.1021/es403729e
    62. Leo W. Y. Yeung and Scott A. Mabury . Bioconcentration of Aqueous Film-Forming Foam (AFFF) in Juvenile Rainbow Trout (Oncorhyncus mykiss). Environmental Science & Technology 2013, 47 (21) , 12505-12513. https://doi.org/10.1021/es403170f
    63. Erika F. Houtz, Christopher P. Higgins, Jennifer A. Field, and David L. Sedlak . Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil. Environmental Science & Technology 2013, 47 (15) , 8187-8195. https://doi.org/10.1021/es4018877
    64. Will J. Backe, Thomas C. Day, and Jennifer A. Field . Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS. Environmental Science & Technology 2013, 47 (10) , 5226-5234. https://doi.org/10.1021/es3034999
    65. Eva I. H. Loi, Leo W. Y. Yeung, Scott A. Mabury, and Paul K. S. Lam . Detections of Commercial Fluorosurfactants in Hong Kong Marine Environment and Human Blood: A Pilot Study. Environmental Science & Technology 2013, 47 (9) , 4677-4685. https://doi.org/10.1021/es303805k
    66. Jennifer L. Guelfo and Christopher P. Higgins . Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites. Environmental Science & Technology 2013, 47 (9) , 4164-4171. https://doi.org/10.1021/es3048043
    67. Benjamin J. Place and Jennifer A. Field . Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military. Environmental Science & Technology 2012, 46 (13) , 7120-7127. https://doi.org/10.1021/es301465n
    68. Holly Lee and Scott A. Mabury . A Pilot Survey of Legacy and Current Commercial Fluorinated Chemicals in Human Sera from United States Donors in 2009. Environmental Science & Technology 2011, 45 (19) , 8067-8074. https://doi.org/10.1021/es200167q
    69. Emily Awad, Xianming Zhang, Satyendra P. Bhavsar, Steve Petro, Patrick W. Crozier, Eric J. Reiner, Rachael Fletcher, Sheryl A. Tittlemier, and Eric Braekevelt . Long-Term Environmental Fate of Perfluorinated Compounds after Accidental Release at Toronto Airport. Environmental Science & Technology 2011, 45 (19) , 8081-8089. https://doi.org/10.1021/es2001985
    70. Amy D. Delinsky, Mark J. Strynar, Patricia J. McCann, Jerry L. Varns, Larry McMillan, Shoji F. Nakayama and Andrew B. Lindstrom . Geographical Distribution of Perfluorinated Compounds in Fish from Minnesota Lakes and Rivers. Environmental Science & Technology 2010, 44 (7) , 2549-2554. https://doi.org/10.1021/es903777s
    71. Chad D. Vecitis, Yajuan Wang, Jie Cheng, Hyunwoong Park, Brian T. Mader and Michael R. Hoffmann. Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environmental Science & Technology 2010, 44 (1) , 432-438. https://doi.org/10.1021/es902444r
    72. Jie Cheng, Chad D. Vecitis, Hyunwoong Park, Brian T. Mader and Michael R. Hoffmann . Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics. Environmental Science & Technology 2010, 44 (1) , 445-450. https://doi.org/10.1021/es902651g
    73. Oscar Quiñones and Shane A. Snyder. Occurrence of Perfluoroalkyl Carboxylates and Sulfonates in Drinking Water Utilities and Related Waters from the United States. Environmental Science & Technology 2009, 43 (24) , 9089-9095. https://doi.org/10.1021/es9024707
    74. Michio Murakami, Keisuke Kuroda, Nobuyuki Sato, Tetsuo Fukushi, Satoshi Takizawa and Hideshige Takada . Groundwater Pollution by Perfluorinated Surfactants in Tokyo. Environmental Science & Technology 2009, 43 (10) , 3480-3486. https://doi.org/10.1021/es803556w
    75. Jie Cheng, Chad D. Vecitis, Hyunwoong Park, Brian T. Mader and Michael R. Hoffmann . Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects. Environmental Science & Technology 2008, 42 (21) , 8057-8063. https://doi.org/10.1021/es8013858
    76. Ramona L. Johnson,, Amy J. Anschutz,, Jean M. Smolen,, Matt F. Simcik, and, R. Lee Penn. The Adsorption of Perfluorooctane Sulfonate onto Sand, Clay, and Iron Oxide Surfaces. Journal of Chemical & Engineering Data 2007, 52 (4) , 1165-1170. https://doi.org/10.1021/je060285g
    77. Melissa M. Schultz,, Christopher P. Higgins,, Carin A. Huset,, Richard G. Luthy,, Douglas F. Barofsky, and, Jennifer A. Field. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility. Environmental Science & Technology 2006, 40 (23) , 7350-7357. https://doi.org/10.1021/es061025m
    78. Susan D. Richardson. Environmental Mass Spectrometry:  Emerging Contaminants and Current Issues. Analytical Chemistry 2006, 78 (12) , 4021-4046. https://doi.org/10.1021/ac060682u
    79. Melissa M. Schultz,, Douglas F. Barofsky, and, Jennifer A. Field. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection Liquid Chromatography Tandem Mass SpectrometryCharacterization of Municipal Wastewaters. Environmental Science & Technology 2006, 40 (1) , 289-295. https://doi.org/10.1021/es051381p
    80. Rossana Bossi,, Frank F. Riget, and, Rune Dietz. Temporal and Spatial Trends of Perfluorinated Compounds in Ringed Seal (Phoca hispida) from Greenland. Environmental Science & Technology 2005, 39 (19) , 7416-7422. https://doi.org/10.1021/es0508469
    81. Susan D. Richardson and, Thomas A. Ternes. Water Analysis:  Emerging Contaminants and Current Issues. Analytical Chemistry 2005, 77 (12) , 3807-3838. https://doi.org/10.1021/ac058022x
    82. Anna Kärrman,, Bert van Bavel,, Ulf Järnberg,, Lennart Hardell, and, Gunilla Lindström. Development of a Solid-Phase Extraction-HPLC/Single Quadrupole MS Method for Quantification of Perfluorochemicals in Whole Blood. Analytical Chemistry 2005, 77 (3) , 864-870. https://doi.org/10.1021/ac049023c
    83. Kurunthachalam Kannan,, Simonetta Corsolini,, Jerzy Falandysz,, Gilberto Fillmann,, Kurunthachalam Senthil Kumar,, Bommanna G. Loganathan,, Mustafa Ali Mohd,, Jesus Olivero,, Nathalie Van Wouwe,, Jae Ho Yang, and, Kenneth M. Aldous. Perfluorooctanesulfonate and Related Fluorochemicals in Human Blood from Several Countries. Environmental Science & Technology 2004, 38 (17) , 4489-4495. https://doi.org/10.1021/es0493446
    84. Runze Sun, Jiefei Cao, Alireza Arhami Dolatabad, Lun Zhao, Jiamin Mai, Xuejia Zhang, Feng Xiao. Structure dependent removal and transformation of more than 50 polyfluoroalkyl substances during drinking water treatment. npj Emerging Contaminants 2025, 1 (1) https://doi.org/10.1038/s44454-025-00008-y
    85. Md Anwarul Islam, Mst Irin Parvin, Cherry Nguyen, Md Robiul Alam, Philip Kwong, John L. Zhou, Volker Hessel, Mohammad Boshir Ahmed. Per- and polyfluoroalkyl substances (PFAS) contamination in agriculture and its potential conflict with circular economy. Environmental Pollution 2025, 385 , 127036. https://doi.org/10.1016/j.envpol.2025.127036
    86. Myoungki Song, Hajeong Jeon, Min-Suk Bae. Linking Analysis to Atmospheric PFAS: An Integrated Framework for Exposure Assessment, Health Risks, and Future Management Strategies. Applied Sciences 2025, 15 (19) , 10540. https://doi.org/10.3390/app151910540
    87. Xi Li, Yuying Fang, Jinxi Song, Haichao Sha, Le Zhang, Qi Li. Nanoplastics and chain-length-dependent PFCs disrupt reproductive endocrinology by targeting the PKC - GnRH signaling axis. Ecotoxicology and Environmental Safety 2025, 304 , 119103. https://doi.org/10.1016/j.ecoenv.2025.119103
    88. Haiying Hu, Ni Yan, Hang Yin, Mark L. Brusseau, Yao Liu, Yujing Ma, Heng Wang. Retention and transport of PFAS precursor 6:2 FTS in heterogeneous variably saturated porous media. Ecotoxicology and Environmental Safety 2025, 304 , 119084. https://doi.org/10.1016/j.ecoenv.2025.119084
    89. Bowei Li, Ling Feng, Sofia Samoili, Stefanos Giannakis. Stagnant waters mobilize hidden dangers: How PFOA and metal pollutants foster pathogen growth and antimicrobial resistance spread. Chemical Engineering Journal 2025, 519 , 165317. https://doi.org/10.1016/j.cej.2025.165317
    90. Versha Joshi, Durgesh Nandini, Roli Purwar. Environmental implications of alternatives to Per- and Polyfluoroalkylated Substances (PFAS): Synthesis and role in Aqueous Film Forming Foam (AFFF). Journal of Fluorine Chemistry 2025, 285-286 , 110462. https://doi.org/10.1016/j.jfluchem.2025.110462
    91. Yuanxing Liu, Wenmei Zhang, Guizhen Zhu, Tong Pei, Guangsheng Guo, Xiayan Wang, Yaoyao Zhao. Methods for sample pretreatment and detection of per- and polyfluoroalkyl substances in biological samples: A review. TrAC Trends in Analytical Chemistry 2025, 187 , 118206. https://doi.org/10.1016/j.trac.2025.118206
    92. Niloufar Amin, Jiangang Chen, Ngoc Susie Nguyen, Qiang He, John Schwartz, Jie Jayne Wu. Rapid and Ultrasensitive Sensor for Point-of-Use Detection of Perfluorooctanoic Acid Based on Molecular Imprinted Polymer and AC Electrothermal Effect. Micromachines 2025, 16 (3) , 283. https://doi.org/10.3390/mi16030283
    93. Ana R.L. Araujo, Anton Pavlov, Jon Eigil Johansen, Sicco Brandsma, Huiling Liu. Synthesis, purification and characterisation of novel PFAS following nontarget analysis. Journal of Fluorine Chemistry 2025, 282 , 110398. https://doi.org/10.1016/j.jfluchem.2025.110398
    94. Bahareh Tajdini, Hooman Vatankhah, Ethan R. Pezoulas, Chuhui Zhang, Christopher P Higgins, Christopher Bellona. Adsorbability of a wide range of per- and polyfluoroalkyl substances on granular activated carbon, ion exchange resin, and surface modified clay. Water Research 2025, 268 , 122774. https://doi.org/10.1016/j.watres.2024.122774
    95. Maria José Farré, Maria Rosa Boleda, Guillem Carrera, Marta Ganzer, Meritxell Minoves, Adrià Rubirola, Aniol Roca, Miquel Paraira. Impact of replacement per- and polyfluoroalkyl substances on an indirect potable water reuse scheme. Environmental Science: Water Research & Technology 2025, 866 https://doi.org/10.1039/D5EW00737B
    96. Gonza Namulanda, Suzanne Condon, Terri Lynn Palmer, Elizabeth Ellis, Fuyuen Yip, Christopher M. Reh, Patrick Breysse. Assessing the utility of healthcare claims data to determine potential health impacts of PFAS exposure with public drinking water. Environmental Epidemiology 2025, 9 (2) , e368. https://doi.org/10.1097/EE9.0000000000000368
    97. Osmar Menezes, Kartika Srivastava, Bianca Ferreira, Jim A. Field, Robert A. Root, Jon Chorover, Leif Abrell, Reyes Sierra-Alvarez. Assessing strategies to measure hidden per- and polyfluoroalkyl substances (PFAS) in groundwater and to evaluate adsorption remediation efficiencies. Chemosphere 2024, 369 , 143887. https://doi.org/10.1016/j.chemosphere.2024.143887
    98. Chao Guo, Shiwen Hu, Pengfei Cheng, Kuan Cheng, Yang Yang, Guojun Chen, Qi Wang, Ying Wang, Tongxu Liu. Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review. Eco-Environment & Health 2024, 3 (4) , 505-515. https://doi.org/10.1016/j.eehl.2024.05.005
    99. Bin Qian, John L. Rayner, Greg B. Davis, Adrian Trinchi, Gavin Collis, Ilias (Louis) Kyratzis, Anand Kumar. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. Ecotoxicology and Environmental Safety 2024, 284 , 116932. https://doi.org/10.1016/j.ecoenv.2024.116932
    100. Shuyan Xu, Pengfeng Zhu, Caiqin Wang, Daoyong Zhang, Ming Zhang, Xiangliang Pan. Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. Journal of Hazardous Materials 2024, 478 , 135515. https://doi.org/10.1016/j.jhazmat.2024.135515
    Load more citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2004, 38, 6, 1828–1835
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es035031j
    Published February 4, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    4636

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.