Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/f73533628fab214b7fafb383b91395b1.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
A Map of European Emissions and Concentrations of PFOS and PFOA | Environmental Science & Technology
    Article

    A Map of European Emissions and Concentrations of PFOS and PFOA
    Click to copy article linkArticle link copied!

    View Author Information
    European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra, Italy
    * Corresponding author phone +39-0332-786407; fax: +39-0332-786351; e-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2009, 43, 24, 9237–9244
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es901246d
    Published November 6, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A spatially distributed data set of measured concentrations of perfluorooctansulfonate (PFOS) and perfluorooctanoate (PFOA) was used, together with climatological averages of river flow, to estimate their overall aqueous emissions from the European Continent. This estimate relies on the assumption that PFOA/S are conservative chemicals. PFOS correlates rather well with river basin population, and its emissions can be estimated by regression for nonmonitored catchments. As such, regression equations were derived in both linear and log−linear form, the latter explaining a much higher portion of variance. Unlike PFOS, PFOA discharges are strongly influenced by point emissions from industrial facilities; they only correlate with catchment population below a threshold of 0.5 tons per year, and point source industrial emissions cannot be neglected in the estimation of PFOA loads. The lumped loads of PFOA from diffuse and point sources are reasonably described by a single log−linear regression model as a function of population in the catchment, likely owing to the fact that fluoropolymer industries located in highly populated catchments are more frequent as well. Overall, by using the log−linear models derived in this paper, PFOS and PFOA discharges along the whole European river network to coastal areas in Europe have been estimated for the year 2007 to be in the order of 20 and 30 tons per year, respectively.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional maps and figures, some of which are quoted in the paper. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 161 publications.

    1. Wen-Long Li, Hayley Hung, Alexander Kasperkiewicz, Chubashini Shunthirasingham, Jared Chisamore, Milena Rabu, Richard Park, Chun-Yan Huo, Patrick Lee, Helena Dryfhout-Clark. Assessing the Shifts in Atmospheric Per- and Polyfluoroalkyl Substances (PFAS) Levels in the Great Lakes and Implications for the Environmental Transport and Fate. ACS ES&T Air 2025, 2 (9) , 1927-1938. https://doi.org/10.1021/acsestair.5c00121
    2. Kaveh Sookhak Lari, Aleks Reinhardt, Andrew C. Warden, John L. Rayner, Greg B. Davis. Probing the Microscopic Behavior of PFOS Clustering and Adsorption at LNAPL Interfaces; a PFOS–Water–Cyclohexane System. Environmental Science & Technology 2025, 59 (28) , 14615-14624. https://doi.org/10.1021/acs.est.5c01748
    3. Yaya Cai, Qianqian Zhang, Guangguo Ying. Quantifying Footprints of Perfluorinated Compounds in China: From Production to Discharge into the Seas. ACS ES&T Water 2025, 5 (2) , 920-933. https://doi.org/10.1021/acsestwater.4c00933
    4. Susanna K. Maisto, Doris Hong, Alexandra J. Griffith, John D. Fortner. Simple, Green Pathway to Precipitate Perfluorooctanoate (PFOA) via Transformation to an Insoluble Ester. Environmental Science & Technology Letters 2024, 11 (4) , 364-369. https://doi.org/10.1021/acs.estlett.4c00144
    5. Patrick Byrne, William M. Mayes, Alun L. James, Sean Comber, Emma Biles, Alex L. Riley, Robert L. Runkel. PFAS River Export Analysis Highlights the Urgent Need for Catchment-Scale Mass Loading Data. Environmental Science & Technology Letters 2024, 11 (3) , 266-272. https://doi.org/10.1021/acs.estlett.4c00017
    6. Chuanzi Gao, Wenhui Qiu, Yi Zheng. Response to Comment on “Oxidative Stress, Endocrine Disturbance, and Immune Interference in Humans Showed Relationships to Serum Bisphenol Concentrations in a Dense Industrial Area”. Environmental Science & Technology 2022, 56 (7) , 4688-4690. https://doi.org/10.1021/acs.est.1c08114
    7. Derek Muir, Luc T. Miaz. Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters. Environmental Science & Technology 2021, 55 (14) , 9527-9537. https://doi.org/10.1021/acs.est.0c08035
    8. Marie-Amélie Pétré, David P. Genereux, Lydia Koropeckyj-Cox, Detlef R.U. Knappe, Sandrine Duboscq, Troy E. Gilmore, Zachary R. Hopkins. Per- and Polyfluoroalkyl Substance (PFAS) Transport from Groundwater to Streams near a PFAS Manufacturing Facility in North Carolina, USA. Environmental Science & Technology 2021, 55 (9) , 5848-5856. https://doi.org/10.1021/acs.est.0c07978
    9. Lin Qian, Frank-Dieter Kopinke, Anett Georgi. Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. Environmental Science & Technology 2021, 55 (1) , 614-622. https://doi.org/10.1021/acs.est.0c04558
    10. William Jouanneau, Bård-Jørgen Bårdsen, Dorte Herzke, Trond Vidar Johnsen, Igor Eulaers, Jan Ove Bustnes. Spatiotemporal Analysis of Perfluoroalkyl Substances in White-Tailed Eagle (Haliaeetus albicilla) Nestlings from Northern Norway—A Ten-Year Study. Environmental Science & Technology 2020, 54 (8) , 5011-5020. https://doi.org/10.1021/acs.est.9b06818
    11. Huanhuan Shi, Yaye Wang, Chenguang Li, Randall Pierce, Shixiang Gao, Qingguo Huang. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide. Environmental Science & Technology 2019, 53 (24) , 14528-14537. https://doi.org/10.1021/acs.est.9b04148
    12. Sarah B. Gewurtz, Lisa E. Bradley, Sean Backus, Alice Dove, Daryl McGoldrick, Hayley Hung, Helena Dryfhout-Clark. Perfluoroalkyl Acids in Great Lakes Precipitation and Surface Water (2006–2018) Indicate Response to Phase-outs, Regulatory Action, and Variability in Fate and Transport Processes. Environmental Science & Technology 2019, 53 (15) , 8543-8552. https://doi.org/10.1021/acs.est.9b01337
    13. Qi Luo, Xiufen Yan, Junhe Lu, Qingguo Huang. Perfluorooctanesulfonate Degrades in a Laccase-Mediator System. Environmental Science & Technology 2018, 52 (18) , 10617-10626. https://doi.org/10.1021/acs.est.8b00839
    14. Sarah B. Gewurtz, Pamela A. Martin, Robert J. Letcher, Neil M. Burgess, Louise Champoux, John E. Elliott, Abde Idrissi. Perfluoroalkyl Acids in European Starling Eggs Indicate Landfill and Urban Influences in Canadian Terrestrial Environments. Environmental Science & Technology 2018, 52 (10) , 5571-5580. https://doi.org/10.1021/acs.est.7b06623
    15. Thanh Wang, Robin Vestergren, Dorte Herzke, Junchao Yu, and Ian T. Cousins . Levels, Isomer Profiles, and Estimated Riverine Mass Discharges of Perfluoroalkyl Acids and Fluorinated Alternatives at the Mouths of Chinese Rivers. Environmental Science & Technology 2016, 50 (21) , 11584-11592. https://doi.org/10.1021/acs.est.6b03752
    16. Xianming Zhang, Rainer Lohmann, Clifton Dassuncao, Xindi C. Hu, Andrea K. Weber, Chad D. Vecitis, and Elsie M. Sunderland . Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area. Environmental Science & Technology Letters 2016, 3 (9) , 316-321. https://doi.org/10.1021/acs.estlett.6b00255
    17. Qi Luo, Junhe Lu, Hao Zhang, Zunyao Wang, Mingbao Feng, Sheau-Yun Dora Chiang, David Woodward, and Qingguo Huang . Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. Environmental Science & Technology Letters 2015, 2 (7) , 198-203. https://doi.org/10.1021/acs.estlett.5b00119
    18. Belén González-Gaya, Jordi Dachs, Jose L. Roscales, Gemma Caballero, and Begoña Jiménez . Perfluoroalkylated Substances in the Global Tropical and Subtropical Surface Oceans. Environmental Science & Technology 2014, 48 (22) , 13076-13084. https://doi.org/10.1021/es503490z
    19. Jonathan P. Benskin, Lutz Ahrens, Derek C. G. Muir, Brian F. Scott, Christine Spencer, Bruno Rosenberg, Gregg Tomy, Henrik Kylin, Rainer Lohmann, and Jonathan W. Martin . Manufacturing Origin of Perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic Seawater. Environmental Science & Technology 2012, 46 (2) , 677-685. https://doi.org/10.1021/es202958p
    20. Kirsten T. Eriksen, Mette Sørensen, Joseph K. McLaughlin, Anne Tjønneland, Kim Overvad, and Ole Raaschou-Nielsen . Determinants of Plasma PFOA and PFOS Levels Among 652 Danish Men. Environmental Science & Technology 2011, 45 (19) , 8137-8143. https://doi.org/10.1021/es100626h
    21. Emily Awad, Xianming Zhang, Satyendra P. Bhavsar, Steve Petro, Patrick W. Crozier, Eric J. Reiner, Rachael Fletcher, Sheryl A. Tittlemier, and Eric Braekevelt . Long-Term Environmental Fate of Perfluorinated Compounds after Accidental Release at Toronto Airport. Environmental Science & Technology 2011, 45 (19) , 8081-8089. https://doi.org/10.1021/es2001985
    22. Susan D. Richardson and Thomas A. Ternes . Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 2011, 83 (12) , 4614-4648. https://doi.org/10.1021/ac200915r
    23. Phoebe Lewis, Erica Odell, Christopher P. Johnstone, Timothy Chaston, Daniel MacMahon, Tanya Paige, Simon Sharp, Mark Patrick Taylor, Vincent Pettigrove, Minna Saaristo. Urban surface water flows contribute more PFAS to marine environments than treated wastewater. Environmental Research 2025, 286 , 122751. https://doi.org/10.1016/j.envres.2025.122751
    24. Ya Yang, Lai Wei, Rui Wang, Guohua Zhao, Shouye Yang, Haifeng Cheng, Hualin Wu, Qinghui Huang. High-resolution source apportionment and spatiotemporal drivers of per- and polyfluoroalkyl substances (PFAS) across China’s largest river-estuary continuum: Toward sustainable management of emerging contaminants. Water Research 2025, 284 , 124015. https://doi.org/10.1016/j.watres.2025.124015
    25. M. Ibrahim, Y. Li, H. A. Danjaji, Y. Wang. Per- and polyfluoroalkyl substances and global water resources: an in-depth review of existing regulatory frameworks worldwide. International Journal of Environmental Science and Technology 2025, 22 (9) , 8259-8280. https://doi.org/10.1007/s13762-024-06256-6
    26. Li Zhao, Jian Chen, Jiaqi Wen, Yangjie Li, Yingjie Zhang, Qunyue Wu, Gang Yu. Unveiling PFAS hazard in European surface waters using an interpretable machine-learning model. Environment International 2025, 199 , 109504. https://doi.org/10.1016/j.envint.2025.109504
    27. Johanna Freilinger, Christoph Kappacher, Konstantin Huter, Thomas S. Hofer, Jan O. Back, Christian W. Huck, Rania Bakry. Interactions between perfluorinated alkyl substances (PFAS) and microplastics (MPs): Findings from an extensive investigation. Journal of Hazardous Materials Advances 2025, 18 , 100740. https://doi.org/10.1016/j.hazadv.2025.100740
    28. J.B. Roman, A.J.B. Kemperman, W.G.J. van der Meer, J.A. Wood. Assessing the viability of bio-based adsorbents for PFAS removal. Chemical Engineering Science 2025, 306 , 121215. https://doi.org/10.1016/j.ces.2025.121215
    29. Pin Wang, Guangyu An, Irene Carra, Francis Hassard, Pablo Campo Moreno, Hacer Sakar, Monika Jodkowska, Dongsheng Wang, Bruce Jefferson, Wenhai Chu, Peter Jarvis. Removal of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by coagulation: Influence of coagulant and dosing conditions. Separation and Purification Technology 2025, 355 , 129562. https://doi.org/10.1016/j.seppur.2024.129562
    30. Bridger J. Ruyle, Emily H. Pennoyer, Simon Vojta, Jitka Becanova, Minhazul Islam, Thomas F. Webster, Wendy Heiger-Bernays, Rainer Lohmann, Paul Westerhoff, Charles E. Schaefer, Elsie M. Sunderland. High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans. Proceedings of the National Academy of Sciences 2025, 122 (3) https://doi.org/10.1073/pnas.2417156122
    31. Yan Wang, Y. Shi, Y. Cai, G. Jiang. Sample pretreatment techniques for per- and polyfluoroalkyl substances (PFAS). 2025, 178-196. https://doi.org/10.1016/B978-0-443-15978-7.00053-9
    32. Qifeng Fan, Meng Zhang, Yiming Liu, Wenbing Wang, Chunyang Li, Yongkang Wei, Hui Li. Perfluorooctanoic acid efficient chain reaction degradation in multifunctional iron-sulfur mineral augmentation geobiochemical remediation system. Chemical Engineering Journal 2024, 498 , 155091. https://doi.org/10.1016/j.cej.2024.155091
    33. Qiuling Ma, Zhiyuan Ning, Miao Fang, Guodong Zhang, He Guo, Jian Zhou, Tiecheng Wang. Interfacial internal-electric field on nanoneedle CoOOH/WO3 photoelectrode realized efficient photoelectrocatalytic degradation of 4-fluorophenol via facilitated H2O oxidation and physical contact. Chemical Engineering Journal 2024, 498 , 155551. https://doi.org/10.1016/j.cej.2024.155551
    34. Zhiyuan Liu, Fan Yang, Tingting Zhai, Jianwei Yu, Chunmiao Wang, Zhengang Liu, Zhixue Liu, Yingxin Gao, Min Yang. Removal of PFOA from water by activated carbon adsorption: Influence of pore structure. Journal of Environmental Chemical Engineering 2024, 12 (5) , 113923. https://doi.org/10.1016/j.jece.2024.113923
    35. Hildegard R. Kasambala, Mwemezi J. Rwiza, Nelson Mpumi, Mwema Felix Mwema, Revocatus Machunda, Kelvin Mtei, Karoli N. Njau. A comprehensive review on the distribution of per- and poly-fluoroalkyl substances in the environment across Sub-Saharan Africa revealed significant variation in their concentrations. Environmental Challenges 2024, 16 , 100975. https://doi.org/10.1016/j.envc.2024.100975
    36. Yalan Zhu, Lihua Qi, Jingjing Yang, Wenqing Zhou, Xiaoge Zhang, Fenyan Chen, Zhiman Li, Chunfeng Guan, Qian Li. Insight into the mechanisms of plant growth promoting strain ZY2 in improving phytoremediation efficiency in perfluorooctanoic acid (PFOA)-contaminated soil. Environmental Technology & Innovation 2024, 35 , 103717. https://doi.org/10.1016/j.eti.2024.103717
    37. Stepan Boitsov, Are Bruvold, Linda Hanssen, Henning K.B. Jensen, Aasim Ali. Per- and polyfluoroalkyl substances (PFAS) in surface sediments of the North-east Atlantic Ocean: A non-natural PFAS background. Environmental Advances 2024, 16 , 100545. https://doi.org/10.1016/j.envadv.2024.100545
    38. Xu Zhu, Hui Li, Yu Luo, Yu Li, Jin Zhang, Zhenyu Wang, Wenyu Yang, Ruifei Li. Evaluation and prediction of anthropogenic impacts on long-term multimedia fate and health risks of PFOS and PFOA in the Elbe River Basin. Water Research 2024, 257 , 121675. https://doi.org/10.1016/j.watres.2024.121675
    39. Olivier Herlory, Marine J. Briand, Dominique Munaron, Pierre Boissery, Anaïs Giraud, Philippe Marchand, Marc Bouchoucha. Perfluoroalkyl substances (PFAS) occurrence, concentrations and spatial distribution along the French Mediterranean coast and lagoons, based on active biomonitoring. Marine Pollution Bulletin 2024, 202 , 116419. https://doi.org/10.1016/j.marpolbul.2024.116419
    40. Alison L. Ling. Estimated scale of costs to remove PFAS from the environment at current emission rates. Science of The Total Environment 2024, 918 , 170647. https://doi.org/10.1016/j.scitotenv.2024.170647
    41. Yutao Chen, Hekai Zhang, Yalan Liu, John A. Bowden, Timothy G. Townsend, Helena M. Solo-Gabriele. Evaluation of per- and polyfluoroalkyl substances (PFAS) released from two Florida landfills based on mass balance analyses. Waste Management 2024, 175 , 348-359. https://doi.org/10.1016/j.wasman.2023.12.054
    42. Juying Li, Ying Liu, Yiqian Song, Li Cao, Yezhi Dou, Jia Yu, Yueqing Zhang, Jian He, Wei Dai, Cheng Yao, Deyang Kong. Enhanced and accelerated degradation of PFOA using visible light—Applying semiconductor carbon nitride as an accelerator. Journal of Environmental Chemical Engineering 2024, 12 (1) , 111653. https://doi.org/10.1016/j.jece.2023.111653
    43. Hui Li, Xu Zhu, Jin Zhang, Zhenyu Wang, Ruifei Li. Characterizing the long-term occurrence and anthropogenic drivers of per- and polyfluoroalkyl substances in surface water of the Rhine River. Water Research 2023, 245 , 120528. https://doi.org/10.1016/j.watres.2023.120528
    44. Carly Beggs, Rachel Mackie, Branislav Vrana, Roman Prokeš, Sara Ghorbani Gorji, Bastian Schulze, Kevin V. Thomas, Jochen F. Mueller, Sarit L. Kaserzon. Estimation of per- and poly-fluoroalkyl substances mass loads in the Danube River using passive sampling. Science of The Total Environment 2023, 892 , 164458. https://doi.org/10.1016/j.scitotenv.2023.164458
    45. Zehong Yang, Qiongfang Zhuo, Wenlong Wang, Shuting Guo, Jianfeng Chen, Yanliang Li, Sihao Lv, Gang Yu, Yongfu Qiu. Fabrication and characterizations of Zn-doped SnO2-Ti4O7 anode for electrochemical degradation of hexafluoropropylene oxide dimer acid and its homologues. Journal of Hazardous Materials 2023, 455 , 131605. https://doi.org/10.1016/j.jhazmat.2023.131605
    46. Lubna Najam, Tanveer Alam. Occurrence, Distribution, and Fate of Emerging Persistent Organic Pollutants (POPs) in the Environment. 2023, 135-161. https://doi.org/10.1007/978-3-031-22269-6_6
    47. Shuangwei Xie, Yonglong Lu. Source Identification and Emission Estimation of Emerging Pollutants. 2023, 41-69. https://doi.org/10.1007/978-981-19-9630-6_2
    48. Bin Ji, Yaqian Zhao. World Profile of Foreseeable Strategies for the Removal of Per- and Polyfluoroalkyl Substances (PFASs) from Water. 2023, 47-69. https://doi.org/10.1007/978-981-99-2062-4_3
    49. Luisa Patrolecco, Jasmin Rauseo, Nicoletta Ademollo, Stefano Polesello, Massimiliano Vardè, Sarah Pizzini, Francesca Spataro. Some organic compounds in potable water: the PFASs, EDCs and PPCPs issue. 2023, 183-228. https://doi.org/10.1016/B978-0-12-824103-5.00001-2
    50. Yoko FUJIKAWA, Ayumi HASHIGUCHI. History of Research and Developments, and Latest Trends in Decomposition Techniques for PFOS and PFOA in Water. Journal of Environmental Conservation Engineering 2022, 51 (6) , 316-326. https://doi.org/10.5956/jriet.51.6_316
    51. Steffen Kittlaus, Manfred Clara, Jos van Gils, Oliver Gabriel, Marianne Bertine Broer, Gerald Hochedlinger, Helene Trautvetter, Gerold Hepp, Jörg Krampe, Matthias Zessner, Ottavia Zoboli. Coupling a pathway-oriented approach with tailor-made monitoring as key to well-performing regionalized modelling of PFAS emissions and river concentrations. Science of The Total Environment 2022, 849 , 157764. https://doi.org/10.1016/j.scitotenv.2022.157764
    52. M.-A. Pétré, K.R. Salk, H.M. Stapleton, P.L. Ferguson, G. Tait, D.R. Obenour, D.R.U. Knappe, D.P. Genereux. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. Science of The Total Environment 2022, 831 , 154763. https://doi.org/10.1016/j.scitotenv.2022.154763
    53. Jose L. Roscales, Belén R. Suárez de Puga, Alba Vicente, Juan Muñoz-Arnanz, Ana I. Sánchez, María Ros, Begoña Jiménez. Levels and trends of perfluoroalkyl acids (PFAAs) in water (2013–2020) and fish from selected riverine basins in Spain. Chemosphere 2022, 286 , 131940. https://doi.org/10.1016/j.chemosphere.2021.131940
    54. Chunjie Gu, Chenye Xu, Quan Zhou, Chensi Shen, Chunyan Ma, Shuren Liu, Shanshan Yin, Fang Li. Congener- and isomer-specific Perfluorinated compounds in textile wastewater from Southeast China. Journal of Cleaner Production 2021, 320 , 128897. https://doi.org/10.1016/j.jclepro.2021.128897
    55. Jacopo Fabrello, Maria Ciscato, Luciano Masiero, Livio Finos, Sara Valsecchi, Stefano Polesello, Ilaria Bernardini, Giulia Dalla Rovere, Luca Bargelloni, Milan Massimo, Tomaso Patarnello, Maria Gabriella Marin, Valerio Matozzo. New compounds, old problems. The case of C6O4 - a substitute of PFOA - and its effects to the clam Ruditapes philippinarum. Journal of Hazardous Materials 2021, 420 , 126689. https://doi.org/10.1016/j.jhazmat.2021.126689
    56. Zhe Wang, Wan Su, Yufeng Zhang. Reverse osmosis membrane design for reclamation and removal of perfluorooctanoic acid. Desalination and Water Treatment 2021, 237 , 32-36. https://doi.org/10.5004/dwt.2021.27745
    57. Huanhuan Shi, Sheau-Yun (Dora) Chiang, Yaye Wang, Yifei Wang, Shangtao Liang, Jing Zhou, Raymond Fontanez, Shixiang Gao, Qingguo Huang. An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. Science of The Total Environment 2021, 788 , 147723. https://doi.org/10.1016/j.scitotenv.2021.147723
    58. Jacopo Fabrello, Francesca Targhetta, Maria Ciscato, Davide Asnicar, Ilaria Bernardini, Massimo Milan, Tomaso Patarnello, Maria Gabriella Marin, Valerio Matozzo. First Evidence of In Vitro Effects of C6O4—A Substitute of PFOA—On Haemocytes of the Clam Ruditapes philippinarum. Toxics 2021, 9 (8) , 191. https://doi.org/10.3390/toxics9080191
    59. Nozomi Takeuchi, Koichi Yasuoka. Review of plasma-based water treatment technologies for the decomposition of persistent organic compounds. Japanese Journal of Applied Physics 2021, 60 (SA) , SA0801. https://doi.org/10.35848/1347-4065/abb75d
    60. Amila O. De Silva, James M. Armitage, Thomas A. Bruton, Clifton Dassuncao, Wendy Heiger-Bernays, Xindi C. Hu, Anna Kärrman, Barry Kelly, Carla Ng, Anna Robuck, Mei Sun, Thomas F. Webster, Elsie M. Sunderland. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environmental Toxicology and Chemistry 2020, 40 (3) , 631-657. https://doi.org/10.1002/etc.4935
    61. Marco Bonato, Francesca Corrà, Marta Bellio, Laura Guidolin, Laura Tallandini, Paola Irato, Gianfranco Santovito. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. International Journal of Environmental Research and Public Health 2020, 17 (21) , 8020. https://doi.org/10.3390/ijerph17218020
    62. A Ronald MacGillivray. Temporal Trends of Per- and Polyfluoroalkyl Substances in Delaware River Fish, USA. Integrated Environmental Assessment and Management 2020, 17 (2) , 411-421. https://doi.org/10.1002/ieam.4342
    63. Masud Hassan, Yanju Liu, Ravi Naidu, Jianhua Du, Fangjie Qi. Adsorption of Perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar. Environmental Technology & Innovation 2020, 19 , 100816. https://doi.org/10.1016/j.eti.2020.100816
    64. Weilan Zhang, Harry Efstathiadis, Lingyun Li, Yanna Liang. Environmental factors affecting degradation of perfluorooctanoic acid (PFOA) by In2O3 nanoparticles. Journal of Environmental Sciences 2020, 93 , 48-56. https://doi.org/10.1016/j.jes.2020.02.028
    65. Qi Jin, Yali Shi, Yaqi Cai. Occurrence and risk of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in seafood from markets in Beijing, China. Science of The Total Environment 2020, 726 , 138538. https://doi.org/10.1016/j.scitotenv.2020.138538
    66. Panneerselvan Logeshwaran, Anithadevi Kenday Sivaram, Meena Yadav, Sreenivasulu Chadalavada, Ravi Naidu, Mallavarapu Megharaj. Phytotoxicity of Class B aqueous firefighting formulations, Tridol S 3 and 6% to Lemna minor. Environmental Technology & Innovation 2020, 18 , 100688. https://doi.org/10.1016/j.eti.2020.100688
    67. Heidi Knutsen, Trond Mæhlum, Ketil Haarstad, Gøril Aasen Slinde, Hans Peter H. Arp. Leachate emissions of short- and long-chain per- and polyfluoralkyl substances (PFASs) from various Norwegian landfills. Environmental Science: Processes & Impacts 2019, 21 (11) , 1970-1979. https://doi.org/10.1039/C9EM00170K
    68. Jincheng Li, Baoxiu Zhao, Qingpeng Ji, Yanqing Zhang, Kaixin Zhang, Tianshuo Gou, Wenxiang Xia, Jie Liu. Treatment for high-concentration liquid crystal wastewater with a novel Fenton–SBR–microwave pyrolysis integrated process. Water Science and Technology 2019, 80 (5) , 920-928. https://doi.org/10.2166/wst.2019.336
    69. Munschy Catherine, Bely Nadège, Pollono Charles, Aminot Yann. Perfluoroalkyl substances (PFASs) in the marine environment: Spatial distribution and temporal profile shifts in shellfish from French coasts. Chemosphere 2019, 228 , 640-648. https://doi.org/10.1016/j.chemosphere.2019.04.205
    70. Dauren Mussabek, Lutz Ahrens, Kenneth M. Persson, Ronny Berndtsson. Temporal trends and sediment–water partitioning of per- and polyfluoroalkyl substances (PFAS) in lake sediment. Chemosphere 2019, 227 , 624-629. https://doi.org/10.1016/j.chemosphere.2019.04.074
    71. Yoshira Ornelas Van Horne, Jennifer Parks, Thien Tran, Leif Abrell, Kelly A. Reynolds, Paloma I. Beamer. Seasonal Variation of Water Quality in Unregulated Domestic Wells. International Journal of Environmental Research and Public Health 2019, 16 (9) , 1569. https://doi.org/10.3390/ijerph16091569
    72. Chang-Gui Pan, Ke-Fu Yu, Ying-Hui Wang, Wei Zhang, Jun Zhang, Jing Guo. Perfluoroalkyl substances in the riverine and coastal water of the Beibu Gulf, South China: Spatiotemporal distribution and source identification. Science of The Total Environment 2019, 660 , 297-305. https://doi.org/10.1016/j.scitotenv.2019.01.019
    73. Dan J Lapworth, Benjamin Lopez, Volker Laabs, Ronald Kozel, Rüdiger Wolter, Rob Ward, Elisa Vargas Amelin, Tim Besien, Jacqueline Claessens, Francis Delloye, Emanuele Ferretti, Johannes Grath. Developing a groundwater watch list for substances of emerging concern: a European perspective. Environmental Research Letters 2019, 14 (3) , 035004. https://doi.org/10.1088/1748-9326/aaf4d7
    74. Isaac Emery, David Kempisty, Brittany Fain, Eric Mbonimpa. Evaluation of treatment options for well water contaminated with perfluorinated alkyl substances using life cycle assessment. The International Journal of Life Cycle Assessment 2019, 24 (1) , 117-128. https://doi.org/10.1007/s11367-018-1499-8
    75. Alberto Pistocchi. An Integrated Perspective of Multiple Stressors in River Ecosystems From the Catchment to the Continental Scale. 2019, 353-374. https://doi.org/10.1016/B978-0-12-811713-2.00020-0
    76. Emanuela Pignotti, Enrico Dinelli. Distribution and partition of endocrine disrupting compounds in water and sediment: Case study of the Romagna area (North Italy). Journal of Geochemical Exploration 2018, 195 , 66-77. https://doi.org/10.1016/j.gexplo.2018.02.008
    77. Chao Su, Shuai Song, Yonglong Lu, Pei Wang, Jing Meng, Xiaotian Lu, Monika D. Jürgens, Kifayatullah Khan, Yvette Baninla, Ruoyu Liang. Multimedia fate and transport simulation of perfluorooctanoic acid/ perfluorooctanoate in an urbanizing area. Science of The Total Environment 2018, 643 , 90-97. https://doi.org/10.1016/j.scitotenv.2018.06.156
    78. Bowen Ti, Li Li, Jianguo Liu, Chengkang Chen. Global distribution potential and regional environmental risk of F-53B. Science of The Total Environment 2018, 640-641 , 1365-1371. https://doi.org/10.1016/j.scitotenv.2018.05.313
    79. C. Gallen, G. Eaglesham, D. Drage, T. Hue Nguyen, J.F. Mueller. A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Chemosphere 2018, 208 , 975-983. https://doi.org/10.1016/j.chemosphere.2018.06.024
    80. Lei Li, Hongyuan Zheng, Tieyu Wang, Minghong Cai, Pei Wang. Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation. Environmental Pollution 2018, 238 , 168-176. https://doi.org/10.1016/j.envpol.2018.03.018
    81. A. Ginebreda, L. Sabater-Liesa, A. Rico, A. Focks, D. Barceló. Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach - emerging pollutants in the Danube River as a case study. Science of The Total Environment 2018, 618 , 323-335. https://doi.org/10.1016/j.scitotenv.2017.11.020
    82. Harrison Omorodion, Miguel Palenzuela, Manuel Ruether, Brendan Twamley, James A. Platts, Robert J. Baker. A rationally designed perfluorinated host for the extraction of PFOA from water utilising non-covalent interactions. New Journal of Chemistry 2018, 42 (10) , 7956-7968. https://doi.org/10.1039/C7NJ03026F
    83. Bentuo Xu, Mohammad Boshir Ahmed, John L. Zhou, Ali Altaee, Minghong Wu, Gang Xu. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors. Chemosphere 2017, 189 , 717-729. https://doi.org/10.1016/j.chemosphere.2017.09.110
    84. Emanuela Pignotti, Gemma Casas, Marta Llorca, Anil Tellbüscher, David Almeida, Enrico Dinelli, Marinella Farré, Damià Barceló. Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain). Science of The Total Environment 2017, 607-608 , 933-943. https://doi.org/10.1016/j.scitotenv.2017.07.025
    85. Xianming Zhang, Yanxu Zhang, Clifton Dassuncao, Rainer Lohmann, Elsie M. Sunderland. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges. Global Biogeochemical Cycles 2017, 31 (8) , 1332-1343. https://doi.org/10.1002/2017GB005624
    86. F. Coperchini, O. Awwad, M. Rotondi, F. Santini, M. Imbriani, L. Chiovato. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). Journal of Endocrinological Investigation 2017, 40 (2) , 105-121. https://doi.org/10.1007/s40618-016-0572-z
    87. Hong Chen, Xiaomeng Wang, Can Zhang, Ruijun Sun, Jianbo Han, Gengchen Han, Wenchao Yang, Xin He. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environmental Pollution 2017, 221 , 234-243. https://doi.org/10.1016/j.envpol.2016.11.070
    88. Hye-Ok Kwon, Hee-Young Kim, Yu-Mi Park, Kwang-Seol Seok, Jeong-Eun Oh, Sung-Deuk Choi. Updated national emission of perfluoroalkyl substances (PFASs) from wastewater treatment plants in South Korea. Environmental Pollution 2017, 220 , 298-306. https://doi.org/10.1016/j.envpol.2016.09.063
    89. Minh A. Nguyen, Karin Wiberg, Erik Ribeli, Sarah Josefsson, Martyn Futter, Jakob Gustavsson, Lutz Ahrens. Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe. Environmental Pollution 2017, 220 , 1438-1446. https://doi.org/10.1016/j.envpol.2016.10.089
    90. T. Kirchgeorg, A. Dreyer, P. Gabrielli, J. Gabrieli, L.G. Thompson, C. Barbante, R. Ebinghaus. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps. Environmental Pollution 2016, 218 , 804-812. https://doi.org/10.1016/j.envpol.2016.08.004
    91. C. Lindim, J. van Gils, I.T. Cousins. Europe-wide estuarine export and surface water concentrations of PFOS and PFOA. Water Research 2016, 103 , 124-132. https://doi.org/10.1016/j.watres.2016.07.024
    92. Miroslav Brumovský, Pavlína Karásková, Mireno Borghini, Luca Nizzetto. Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters. Chemosphere 2016, 159 , 308-316. https://doi.org/10.1016/j.chemosphere.2016.06.015
    93. Hee-Young Kim, Hyun-Woo Seok, Hye-Ok Kwon, Sung-Deuk Choi, Kwang-Seol Seok, Jeong Eun Oh. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea. Science of The Total Environment 2016, 563-564 , 530-537. https://doi.org/10.1016/j.scitotenv.2016.04.077
    94. Susanne Keiter, Kathleen Burkhardt-Medicke, Peggy Wellner, Britta Kais, Harald Färber, Dirk Skutlarek, Magnus Engwall, Thomas Braunbeck, Steffen H. Keiter, Till Luckenbach. Does perfluorooctane sulfonate (PFOS) act as chemosensitizer in zebrafish embryos?. Science of The Total Environment 2016, 548-549 , 317-324. https://doi.org/10.1016/j.scitotenv.2015.12.089
    95. Ignacio A. Rodriguez-Jorquera, Cecilia Silva-Sanchez, Mark Strynar, Nancy D. Denslow, Gurpal S. Toor, . Footprints of Urban Micro-Pollution in Protected Areas: Investigating the Longitudinal Distribution of Perfluoroalkyl Acids in Wildlife Preserves. PLOS ONE 2016, 11 (2) , e0148654. https://doi.org/10.1371/journal.pone.0148654
    96. Di Zhang, Qi Luo, Bin Gao, Sheau-Yun Dora Chiang, David Woodward, Qingguo Huang. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere 2016, 144 , 2336-2342. https://doi.org/10.1016/j.chemosphere.2015.10.124
    97. Mikael Karlsson, Michael Gilek. Governance of Chemicals in the Baltic Sea Region: A Study of Three Generations of Hazardous Substances. 2016, 97-123. https://doi.org/10.1007/978-3-319-27006-7_5
    98. Brij Mohan Sharma, Girija K. Bharat, Shresth Tayal, Thorjørn Larssen, Jitka Bečanová, Pavlína Karásková, Paul G. Whitehead, Martyn N. Futter, Dan Butterfield, Luca Nizzetto. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution 2016, 208 , 704-713. https://doi.org/10.1016/j.envpol.2015.10.050
    99. Takeo Sakurai, Shigeko Serizawa, Jun Kobayashi, Keita Kodama, Jeong-Hoon Lee, Hideaki Maki, Yasuyuki Zushi, Janice Beltran Sevilla-Nastor, Yoshitaka Imaizumi, Noriyuki Suzuki, Toshihiro Horiguchi, Hiroaki Shiraishi. Temporal trends for inflow of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to Tokyo Bay, Japan, estimated by a receptor-oriented approach. Science of The Total Environment 2016, 539 , 277-285. https://doi.org/10.1016/j.scitotenv.2015.08.142
    100. Maiju Happonen, Harri Koivusalo, Olli Malve, Noora Perkola, Janne Juntunen, Timo Huttula. Contamination risk of raw drinking water caused by PFOA sources along a river reach in south-western Finland. Science of The Total Environment 2016, 541 , 74-82. https://doi.org/10.1016/j.scitotenv.2015.09.008
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2009, 43, 24, 9237–9244
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es901246d
    Published November 6, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    4675

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.