Abstract
The high-resolution seismic imaging of subducted oceanic slabs1,2 has become a powerful tool for reconstructing palaeogeography3. The images can now be interpreted quantitatively by comparison with models of the general circulation of the Earth's mantle4. Here we use a three-dimensional spherical computer model of mantle convection5,6 to show that seismic images of the subducted Farallon plate provide strong evidence for a Mesozoic period of low-angle subduction under North America. Such a period of low-angle subduction has been invoked independently to explain Rocky Mountain uplift far inland from the plate boundary during the Laramide orogeny7. The computer simulations also allow us to locate the largely unknown KulaâFarallon spreading plate boundary, the location of which is important for inferring the trajectories of âsuspectâ terrain across the Pacific basin8.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1â 7 (1997).
van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578â 584 (1997).
van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246â249 ( 1999).
Bunge, H.-P. et al. Time scales and heterogeneous structure in geodynamic earth models. Science 280, 91â 95 (1998).
Bunge, H.-P. & Baumgardner, J. R. Mantle convection modeling on parallel virtual machines. Comput. Phys. 9, 207â215 (1995).
Bunge, H.-P., Richards, M. A. & Baumgardner, J. R. A sensitivity study of three-dimensional spherical mantle convection at 10(8) Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. 102, 11991â12007 ( 1997).
Coney, P. J. & Reynolds, S. T. Cordilleran Benioff zones. Nature 270, 403â406 ( 1977).
Debiche, M. G., Cox, A. & Engebretson, D. The motion of allochthonous terranes across the North Pacific basin. GSA Spec. Pap. 207, 1â 49 (1987).
Atwater, T. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Am. Bull. 81, 3513â3536 (1970).
Stock, J. & Molnar, P. Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallon, Kula and Pacific plates. Tectonics 7, 1339â1384 (1988).
Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific basin. GSA Spec. Pap. 206, 1â59 (1986).
Van der Lee, S. & Nolet, G. Seismic images of the subducted trailing fragments of the Farallon plate. Nature 386, 266â269 ( 1997).
Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27â78 (1998).
Mitrovica, J. X. Haskell [1935] revisited. J. Geophys. Res. 101, 555â569 (1996).
Hager, B. H. & Richards, M. A. Long-wavelength variations in Earth's geoid: Physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A 328, 309â327 (1989).
Ricard, Y., Sabadini, R. & Spada, G. Isostatic deformations and polar wander induced by redistribution of mass within the Earth. J. Geophys. Res. 97, 14223â14236 (1992).
Wasserburg, G. J., MacDonald, G. J. F., Hoyle, F. & Fowler, W. A. Relative contributions of uranium, thorium, and potassium to heat production in the Earth. Science 143, 465â 467 (1964).
Sleep, N. H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 95, 6715â6736 ( 1990).
Davies, G. F. & Richards, M. A. Mantle convection. J. Geol. 100, 151â206 ( 1992).
Tackley, P. J. & Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle. J. Geophys. Res. 99, 15877â15901 ( 1994).
Bercovici, D., Schubert, G. & Glatzmaier, G. A. Three dimensional spherical models of convection in the earth's mantle. Science 244, 893â 1016 (1989).
Megnin, C., Bunge, H.-P., Romanowicz, B. & Richards, M. A. Imaging 3-D spherical convection models: What can seismic tomography tell us about mantle dynamics? Geophys. Res. Lett. 24, 1299â1302 (1997).
Duffy, T. S. & Ahrens, T. J. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide. J. Geophys. Res. 100, 529â 542 (1995).
Hamilton, W. in Mesozoic Paleogeography of the Western United States (eds Howell, D. G. & McDougall, K. A.) 33â70 (Pacific Coast Paleogeography Symp. 2, Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, 1978).
Bird, P. Formation of the Rocky Mountains, western United States: a continuum computer model. Science 239, 1501â 1507 (1988).
Jordan, T. E. et al. Andean tectonics related to geometry of subducted Nazca plate. Geol. Study Am. Bull. 94, 341â 361 (1983).
Jordan, T. E. & Allmendiger, R. W. The Sierras Pampeanas of Argentina: a modern analogue of rocky mountain foreland deformation. Am. J. Sci. 286, 737â764 (1986).
Dickenson, W. R. & Snyder, W. S. Plate tectonics of the Laramide orogeny. GSA Mem. 151, 355 â366 (1978).
Livaccari, R. F., Burke, K. & Sengoer, A. M. Was the Laramide orogeny related to subduction of an oceanic plateau. Nature 289, 276â 278 (1981).
Engebretson, D. C., Cox, A. & Thompson, G. A. Correlation of plate motions with continental tectonics: Laramide to Basin and Range. Tectonics 3, 115â119 (1984).
Zhong, S. & Gurnis, M. Mantle convection with plates and mobile, faulted plated margins. Science 267, 838â843 (1995).
Tackley, P. J. Effects of strongly temperature-dependent viscosity on time-dependent, 3-dimensional models of mantle convection. Geophys. Res. Lett. 20 , 2187â2190 (1993).
Acknowledgements
We thank P. Bird and E. Humphreys for helpful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bunge, HP., Grand, S. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337â340 (2000). https://doi.org/10.1038/35012586
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/35012586
This article is cited by
-
Strain localization instabilities and the genesis of multiple axes of seafloor spreading in the Carmen basin, southern Gulf of California
International Journal of Earth Sciences (2024)
-
Assessing plate reconstruction models using plate driving force consistency tests
Scientific Reports (2023)
-
Venus, the Planet: Introduction to the Evolution of Earthâs Sister Planet
Space Science Reviews (2023)
-
Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction
Nature Communications (2021)
-
Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone
Nature Geoscience (2018)