Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/cd8ea35fa0cf33d37e8e18b597fa6d33.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. | Science
Skip to main content
Advertisement
Main content starts here
No access
Report

Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P.

Science
20 Nov 2014
Vol 347, Issue 6219
pp. 248-250

Colonizing the roof of the world

Humans only settled permanently on the Tibetan plateau about 3600 years ago. Chen et al. examined archaeological crop remains unearthed in northeastern Tibet, which elucidate the timing of agricultural settlement. Although much earlier traces of humans in Tibet have been dated to 20,000 years ago, year-round presence at the highest altitudes appears to have been impossible until the advent of suitable crops, such as barley. Surprisingly, these prehistoric farming communities expanded onto the plateau at the same time as climate was cooling.
Science, this issue p. 248

Abstract

Our understanding of when and how humans adapted to living on the Tibetan Plateau at altitudes above 2000 to 3000 meters has been constrained by a paucity of archaeological data. Here we report data sets from the northeastern Tibetan Plateau indicating that the first villages were established only by 5200 calendar years before the present (cal yr B.P.). Using these data, we tested the hypothesis that a novel agropastoral economy facilitated year-round living at higher altitudes since 3600 cal yr B.P. This successful subsistence strategy facilitated the adaptation of farmers-herders to the challenges of global temperature decline during the late Holocene.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S6
Tables S1 to S3
References (3044)

Resources

File (chen.sm.pdf)

References and Notes

1
Aldenderfer M., Peopling the Tibetan plateau: Insights from archaeology. High Alt. Med. Biol. 12, 141–147 (2011).
2
Zhang D. D., Li S. H., Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys. Res. Lett. 29, 16-1–16-3 (2002).
3
Brantingham P. J., Gao X., Peopling of the northern Tibetan Plateau. World Archaeol. 38, 387–414(2006).
4
Brantingham P. J., Xing G., Madsen D. B., Rhode D., Perreault C., van der Woerd J., Olsen J. W., Late occupation of the high-elevation Northern Tibetan Plateau based on cosmogenic, luminescence, and radiocarbon ages. Geoarchaeology 28, 413–431 (2013).
5
Tang H. S., Zhou C. L., Li Y. Q., Liang Z., A new discovery of microlithic information at the entrance to the Northern Qingzang Plateau of the Kunlun Mountains of Qinghai. Chin. Sci. Bull. 58, 247–253 (2013).
6
Bureau of National Cultural Relics, Atlas of Chinese Cultural Relics-Fascicule of Qinghai Province (China Cartographic Press, Beijing, 1996).
7
Bureau of National Cultural Relics, Atlas of Chinese Cultural Relics-Fascicule of the Sichuan Province (Cultural Relics Press, Beijing, 2009).
8
Bureau of National Cultural Relics, Atlas of Chinese Cultural Relics-Fascicule of the Tibet Autonomous Region (Cultural Relics Press, Beijing, 2010).
9
Dong G. H., Jia X., Elston R., Chen F. H., Li S. C., Wang L., Cai L. H., An C. B., Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J. Archaeol. Sci. 40, 2538–2546 (2013).
10
D. J. Xie, Prehistoric Archaeology of Gansu Province and Qinghai Province (Cultural Relics Press, Beijing, 2002).
11
Materials and methods are available as supplementary materials on Science Online.
12
Zhao Z. J., New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthropol. 52, S295–S306 (2011).
13
X. Y. Wang, Zhongguo Shuji (Common Millet in China) (China Agricultural Press, Beijing, 1994).
14
Y. Chai, Mizi (Common Millet) (China Agricultural Press, Beijing, 1999).
15
D’Alpoim Guedes J., Butler E. E., Modeling constraints on the spread of agriculture to Southwest China with thermal niche models. Quat. Int. 349, 29–41 (2014).
16
Páldi E., Szalai G., Janda T., Horváth E., Rácz I., Lásztity D., Determination of frost tolerance in winter wheat and barley at the seedling stage. Biol. Plant. 44, 145–147 (2001).
17
Barton L., Newsome S. D., Chen F. H., Wang H., Guilderson T. P., Bettinger R. L., Agricultural origins and the isotopic identity of domestication in northern China. Proc. Natl. Acad. Sci. U.S.A. 106, 5523–5528 (2009).
18
Flad R., Shuicheng L., Xiaohong W., Zhijun Z., Early wheat in China: Results from new studies at Donghuishan in the Hexi Corridor. Holocene 20, 955–965 (2010).
19
Dodson J. R., Li X. Q., Zhou X. Y., Zhao K. L., Sun N., Atahan P., Origin and spread of wheat in China. Quat. Sci. Rev. 72, 108–111 (2013).
20
Jones M., Hunt H., Lightfoot E., Lister D., Liu X. Y., Motuzaite-Matuzeviciute G., Food globalization in prehistory. World Archaeol. 43, 665–675 (2011).
21
Z. J. Zhao, Analysis report of flotation results in Fengtai Kayue culture site, Huzhu, Qinghai. Kaogu yu Wenwu (Archaeolgy and Relics) 2, 85–91 (2004).
22
d’Alpoim Guedes J., Lu H. L., Li Y. X., Spengler R. N., Wu X. H., Aldenderfer M. S., Moving agriculture onto the Tibetan plateau: The archaeobotanical evidence. Archaeol. Anthropol. Sci. 6, 255–269 (2014).
23
M. Brink, Setaria italica (L.), P. Beauv, PROTA4U; in PROTA (Plant Resources of Tropical Africa), M. Brink, G. Belay, Eds. (Wageningen University, Wageningen, Netherlands, 2006); www.prota4u.org/search.asp.
24
Fu D. X., Discovery, identification and study of the remains of Neolithic cereals from the Changguogou site, Tibet. Kaogu (Archaeol.) 47, 66–74 (2001).
25
Wang Y., Cheng H., Edwards R. L., He Y., Kong X., An Z., Wu J., Kelly M. J., Dykoski C. A., Li X., The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854–857 (2005).
26
Marcott S. A., Shakun J. D., Clark P. U., Mix A. C., A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).
27
Beall C. M., Cavalleri G. L., Deng L., Elston R. C., Gao Y., Knight J., Li C., Li J. C., Liang Y., McCormack M., Montgomery H. E., Pan H., Robbins P. A., Shianna K. V., Tam S. C., Tsering N., Veeramah K. R., Wang W., Wangdui P., Weale M. E., Xu Y., Xu Z., Yang L., Zaman M. J., Zeng C., Zhang L., Zhang X., Zhaxi P., Zheng Y. T., Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl. Acad. Sci. U.S.A. 107, 11459–11464 (2010).
28
Cockram J., Chiapparino E., Taylor S. A., Stamati K., Donini P., Laurie D. A., O’sullivan D. M., Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor. Appl. Genet. 115, 993–1001 (2007).
29
Zhao M., Kong Q. P., Wang H. W., Peng M. S., Xie X. D., Wang W. Z., Jiayang J. G., Duan J. G., Cai M. C., Zhao S. N., Cidanpingcuo Y. Q., Tu S. F., Wu Y. G., Yao H. J., Bandelt Y. P., Zhang, Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 106, 21230–21235 (2009).
30
Dong G. H., Ren L. L., Matuzeviciute G. M., Wang H., Ren X. Y., Chen F. H., A comparative study of 14C dating on charcoal and charred seeds from Late Neolithic and Bronze Age sites in Gansu and Qinghai Provinces, NW China. Radiocarbon 56, 157–163 (2014).
31
Reimer P. J., Baillie M. G. L., Bard E., Bayliss A., Beck J. W., Blackwell P. G., Bronk Ramsey C., Buck C. E., Burr G. S., Edwards R. L., Friedrich M., Grootes P. M., Guilderson T. P., Hajdas I., Heaton T. J., Hogg A. G., Hughen K. A., Kaiser K. F., Kromer B., McCormac F. G., Manning S. W., Reimer R. W., Richards D. A., Southon J. R., Talamo S., Turney C. S. M., van der Plicht J., Weyhenmeyer C. E., IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 1111–1150 (2009).
32
Stuiver M., Reimer P. J., Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).
33
IA, CASS (Institute of Archaeology, Chinese Academy of Social Sciences), Radiocarbon Dates in Chinese Archaeology (1965-1991) (Cultural Relics Press, Beijing, 1991).
34
IA, CASS, Report of 14C dates (29). Kaogu (Archaeol.) 49, 64–68 (2003).
35
IA, CASS, Report of 14C dates (31). Kaogu (Archaeol.) 51, 57–61 (2005).
36
M. M. Ma, thesis, Lanzhou University, Lanzhou, China (2013).
37
Cui Y. P., Wang J. X., Xian Z. Q., Chou S. H., Stable isotopic analysis on human bones from Zongri. Quat. Sci. 26, 604–611 (2006).
38
Zhang X. L., Study and advancement on human diets using δ13C and δ15N analysis. Kaogu (Archaeol.) 52, 50–56 (2006).
39
Zhang X. L., Wang J. X., Xian Z. Q., Chou S. H., Studies on ancient human diet. Kaogu (Archaeol.) 49, 50–56 (2003).
40
X. Jia, thesis, Lanzhou University, Lanzhou, China (2012).
41
Madsen D. B., Haizhou M., Brantingham P. J., Xing G., Rhode D., Haiying Z., Olsen J. W., The Late Upper Paleolithic occupation of the northern Tibetan Plateau margin. J. Archaeol. Sci. 33, 1433–1444 (2006).
42
P. J. Brantingham, X. Gao, J. W. Olsen, H. Z. Ma, D. Rhode, H. Y. Zhang, D. B. Madsen, in Late Quaternary Climate Change and Human Adaptation in Arid China, D. B. Madsen, F. H. Chen, X. Gao, Eds. (Elsevier, Amsterdam, 2007), vol. 9, chap. 9.
43
Rhode D., Brantingham P. J., Perreault C., Madsen D. B., Mind the gaps: Testing for hiatuses in regional radiocarbon date sequences. J. Archaeol. Sci. 52, 567–577 (2014).
44
Sun Y. J., Lai Z. P., Madsen D., Hou G. L., Luminescence dating of a hearth from the archaeological site of Jiangxigou in the Qinghai Lake area of the northeastern Qinghai-Tibetan Plateau. Quat. Geochronol. 12, 107–110 (2012).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();