Skip to main content
Advertisement
Main content starts here
No access
Report

An arboreal docodont from the Jurassic and mammaliaform ecological diversification

Science
13 Feb 2015
Vol 347, Issue 6223
pp. 764-768

Taking advantage of new neighborhoods

Mammals are one of the most morphologically diverse organisms, with adaptation to unique ecological conditions creating a wide array of forms, from mice to whales. Two new basal mammals from the mid-Jurassic period suggest that this diversification was well under way millions of years earlier than previously thought. Luo et al. describe a burrowing species with limb and digit modifications similar to those of current burrowers and identify the likely genes and developmental pathways involved. Meng et al. describe an arboreal species with modifications for climbing and that possessed teeth clearly adapted for a herbivorous diet, including the consumption of sap.
Science, this issue p. 760, p. 764

Abstract

A new docodontan mammaliaform from the Middle Jurassic of China has skeletal features for climbing and dental characters indicative of an omnivorous diet that included plant sap. This fossil expands the range of known locomotor adaptations in docodontans to include climbing, in addition to digging and swimming. It further shows that some docodontans had a diet with a substantial herbivorous component, distinctive from the faunivorous diets previously reported in other members of this clade. This reveals a greater ecological diversity in an early mammaliaform clade at a more fundamental taxonomic level not only between major clades as previously thought.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S8
Tables S1 to S3
References (3180)

Resources

File (1260879-meng.sm.pdf)

References and Notes

1
Z. Kielan-Jaworowska, R. L. Cifelli, Z.-X. Luo, Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, New York, 2004).
3
Sigogneau-Russell D., Docodonts from the British Mesozoic. Acta Palaeontol. Pol. 48, 357–374 (2003).
4
Ji Q., Luo Z. X., Yuan C. X., Tabrum A. R., A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).
5
Luo Z.-X., Martin T., Analysis of molar structure and phylogeny of docodont genera. Bull. Carnegie Mus. Nat. Hist. 39, 27–47 (2007).
6
Averianov A. O., Lopatin A. V., Krasnolutskii S. A., Ivantsov S. V.,New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships Proc. Zool. Inst. Russian Acad. Sci. 314, 121–148 (2010).
7
Hu Y.-M., Meng J., Clark J. M., A new Late Jurassic docodont (Mammalia) from northeastern Xinjiang, China. Vertebr. Palasiat. 45, 173–194 (2007).
8
Martin T., Averianov A. O., Pfretzschner H.-U., Mammals from the Late Jurassic Qigu formation in the southern Junggar Basin, Xinjiang, northwest China. Palaeobiodivers. Palaeoenviron. 90, 295–319 (2010).
9
Rougier G. W., Sheth A. S., Carpenter K., Appella-Guiscafre L., Davis B. M., A new species of docodon (Mammaliaformes: Docodonta) from the Upper Jurassic Morrison Formation and a reassessment of selected craniodental characters in basal mammaliaformsJ. Mamm. Evol. (2014).
10
Zhou C.-F., Wu S., Martin T., Luo Z. X., A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500, 163–167 (2013).
11
Rowe T. B., Macrini T. E., Luo Z. X., Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011).
12
Luo Z.-X., Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Evol. Syst. 42, 355–380 (2011).
13
Meng J., Hu Y., Wang Y., Wang X., Li C., A Mesozoic gliding mammal from northeastern China. Nature 444, 889–893 (2006).
14
Luo Z.-X., Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).
15
Rougier G. W., Apesteguía S., Gaetano L. C., Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479, 98–102 (2011).
16
Gill P. G., Purnell M. A., Crumpton N., Brown K. R., Gostling N. J., Stampanoni M., Rayfield E. J., Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512, 303–305 (2014).
17
Chen M., Luo Z.-X., Postcranial skeleton of the cretaceous mammal Akidolestes cifellii and its locomotor adaptations. J. Mamm. Evol. 20, 159–189 (2012).
18
Materials and methods and supplementary text are available as supplementary materials on Science Online.
19
P. Hershkovitz, New World Monkeys (Platyrrhini) (Univ. Chicago Press, Chicago, 1977).
20
Wilson G. P., Evans A. R., Corfe I. J., Smits P. D., Fortelius M., Jernvall J., Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).
21
Martin T., Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool. J. Linn. Soc. 145, 219–248 (2005).
22
Luo Z.-X., Ji Q., Yuan C. X., Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450, 93–97 (2007).
23
Weisbecker V., Warton D. I., Evidence at hand: Diversity, functional implications, and locomotor prediction in intrinsic hand proportions of diprotodontian marsupials. J. Morphol. 267, 1469–1485 (2006).
24
Kirk E. C., Lemelin P., Hamrick M. W., Boyer D. M., Bloch J. I., Intrinsic hand proportions of euarchontans and other mammals: Implications for the locomotor behavior of plesiadapiforms. J. Hum. Evol. 55, 278–299 (2008).
25
MacLeod N., Rose K. D., Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am. J. Sci. 293 (A), 300–355 (1993).
26
Kielan-Jaworowska Z., Gambaryan P. P., Postcranial anatomyand habits of Asian multituberculate mammalsFossils Strata 36, 1–92 (1994).
27
Jenkins F. A., Parrington F. R., The postcranial skeletons of the triassic mammals eozostrodon, megazostrodon and erythrotherium. Philos. Trans. R. Soc. Lond. 273, 387–431 (1976).
28
Argot C., Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 247, 51–79 (2001).
29
Sargis E. J., New views on tree shrews: The role of Tupaiids in primate supraordinal relationships. Evol. Anthropol. 13, 56–66 (2004).
30
J. Lessertisseur, R. Saban, in Traité de Zoologie. Tome XVI (Fascicule I). Mammifères: Téguments et Squelette, P.-P. Grassé, Ed. (Masson, Paris, 1967), pp. 587-675.
31
D. L. Swofford, PAUP*—Phylogenetic Analysis Using Parsimony (*and other methods) (Version 4.0b, Sinaur Associates, Sunderland, MA, 2000).
32
Hurum J. H., Luo Z.-X., Kielan-Jaworowska Z., Were mammals originally venomous? Acta Palaeontol. Pol. 51, 1–11 (2006).
33
Liu Y.-Q., Liu Y., Ji S., Yang Z., U–Pb zircon age for the Daohugou Biota at Ning-Cheng of Inner Mongolia and comments on related issues. Chin. Sci. Bull. 51, 2634–2644 (2006).
34
Liu Y.-Q., Kuang H.-W., Jiang X.-J., Peng N., Xu H., Sun H.-Y., Timing of the earliest known feathered dinosaurs and transitional pterosaurs older than the Jehol Biota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 323-325, 1–12 (2012).
35
Peng N., Liu Y. Q., Kuang H.-W., Jiang X., Stratigraphy and geochronology of vertebrate fossil-bearing Jurassic strata from Linglongta, Jianchange County, Liaoning Province, northeastern China. Acta Geol. Sin. 6, 1326–1339 (2012) [in English].
36
Ren D., Gao K.-Q., Guo Z., Ji S.-A., Stratigraphic division of the Jurassic in the Daohugou area, Ningcheng, Inner Mongolia. Geol. Bull. China 21, 584–588 (2002) [in Chinese].
37
Gu J.-J., Montealegre-Z F., Robert D., Engel M. S., Qiao G.-X., Ren D., Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proc. Natl. Acad. Sci. U.S.A. 109, 3868–3873 (2012).
38
F. Gradstein, J. Ogg, A. Smith, A Geologic Time Scale (Cambridge Univ. Press, Cambridge, 2004).
39
Sullivan C., Wang Y., Hone D. W. E., Wang Y.-Q., Xu X., Zhang F.-C., The vertebrates of the Jurassic Daohugou biota of northeastern China. J. Vertebr. Paleontol. 34, 243–280 (2014).
40
Gaetano L. C., Rougier G. W., New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J. Vertebr. Paleontol. 31, 829–843 (2011).
41
Gaetano L. C., Rougier G. W., First amphilestid from South America: A molariform from the Jurassic Canadon Asfalto Formation, Patagonia, Argentina. J. Mamm. Evol. 19, 235–248 (2012).
42
Gao K.-Q., Shubin N. H., Earliest known crown-group salamanders. Nature 422, 424–428 (2003).
43
Lü J., Unwin D. M., Deeming D. C., Jin X., Liu Y., Ji Q., An egg-adult association, gender, and reproduction in pterosaurs. Science 331, 321–324 (2011).
44
Zhang F., Zhou Z., Xu X., Wang X., Sullivan C., A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455, 1105–1108 (2008).
45
Q. Ji, W. Chen, W.-L. Wang, X. Jin, J.-P. Zhang, Y.-Q. Liu, H. Zhang, P.-Y. Yao, S.-A. Ji, C.-X. Yuan, Y. Zhang, H.-L. You, Mesozoic Jehol Biota of Western Liaoning, China (Geol. Publ. House, Beijing, 2004), pp. 1–375.
46
Gao K.-Q., Ren D., Radiometric dating of ignimbrite from Inner Mongolia provides no indication of a post-Middle Jurassic age for the Daohugou beds. Acta Geol. Sin. Engl. Ed. 80, 42–45 (2006).
47
Chen W., Ji Q., Liu D. Y., Zhang Y., Song B., Liu X. Y., Isotope geochronology of the fossil-bearing beds in the Daohugou area, Ningcheng, Inner Mongolia. Geol. Bull. .China 23, 1165–1169 (2004) [in Chinese with English summary].
48
Chang S.-C., Zhang H.-C., Renne P. R., Fang F., High-precision 40Ar/39Ar age constraints on the basal Lanqi Formation and its implications for the origin of angiosperm plants. Earth Planet. Sci. Lett. 279, 212–221 (2009).
49
Shen Y.-B., Chen P.-J., Huang D.-Y., Age of the fossil conchostracans from Daohugou of Ningcheng, Inner Mongolia. J. Stratigr. 27, 311–313 (2003) [in Chinese].
50
P. D. Gingerich, B. H. Smith, in Size and Scaling in Primate Biology, W. L. Jungers, Ed. (Plenum Press, New York, 1984), pp. 257–272.
51
Luo Z.-X., Crompton A. W., Sun A.-L., A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292, 1535–1540 (2001).
52
Foster J. R., Preliminary mass estimates for mammalian genera of the Morrison Formation (Upper Jurassic; North America). PaleoBios 28, 114–122 (2009).
53
Campione N. E., Evans D. C., A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10, 60 (2012).
54
Martin T., Early mammalian evolutionary experiments. Science 311, 1109–1110 (2006).
55
M. Hildebrand, in Functional Vertebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, D. B. Wake, Eds. (Belknap, Cambridge, MA, 1985), pp. 89–109.
56
Martin T., Mammalian postcranial bones from the Late Jurassic of Portugal and their implications for forelimb evolution. J. Vertebr. Paleontol. 33, 1432–1441 (2013).
57
F. S. Szalay, Evolutionary History of the Marsupials and an Analysis of Osteological Characters (Cambridge Univ. Press, Cambridge, 1994).
58
Jenkins F. A., The Chañares (Argentina) Triassic reptile fauna. VII. The postcranial skeleton of the traversodontid Massetognathus pascuali (Therapsida, Cynodontia). Breviora 352, 1–28 (1970).
59
Jenkins F. A., The postcranial skeleton of African cynodonts. Peabody Mus. Nat. History Bull. 36, 1–216 (1971).
60
Galis F., Carrier D. R., van Alphen J., van der Mije S. D., Van Dooren T. J. M., Metz J. A. J., ten Broek C. M. A., Fast running restricts evolutionary change of the vertebral column in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 11401–11406 (2014).
61
Buchholtz E. A., Crossing the frontier: A hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology 117, 64–69 (2014).
62
Krause D. W., Jenkins F. A., The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool. 150, 199–246 (1983).
63
Argot C., Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 255, 279–300 (2003).
64
Kermack K. A., Lee A. J., Lees P. M., Mussett F., A new docodont from the Forest Marble. Zool. J. Linn. Soc. 89, 1–39 (1987).
65
R. M. Nowak, Walker’s Mammals of the World (Johns Hopkins Univ. Press, Baltimore, 2 vols., 1991).
66
D. MacDonald, Ed., The Encyclopedia of Mammals (Barnes and Noble, New York, 2002).
67
Butler P. M., An alternative hypothesis on the origin of docodont molar teeth. J. Vertebr. Paleontol. 17, 435–439 (1997).
68
Martin T., Averianov A. O., A new docodont (Mammalia) from the Middle Jurassic of Kyrgyzstan, Central Asia. J. Vertebr. Paleontol. 24, 195–201 (2004).
69
Pfretzschner H.-U., Martin T., Maisch M., Matze A., Sun G., A new docodont from the Late Jurassic of the Junggar Basin of northwest China. Acta Palaeontol. Pol. 50, 799–808 (2005).
70
Averianov A. O., Lopatin A. V., Itatodon tatarinovi (Tegotheriidae, Mammalia), a docodont from the Middle Jurassic of Western Siberia and phylogenetic analysis of Docodonta. Paleontol. J. 40, 668–677 (2006).
71
Prasad G. V. R., Manhas B. K., First docodont mammals of Laurasian affinities from India. Curr. Sci. 81, 1235–1238 (2001).
72
Datta P. M., Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 25, 200–207 (2005).
73
Luo Z.-X., Kielan-Jaworowska Z., Cifelli R. L., In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Pol. 47, 1–78 (2002).
74
Luo Z.-X., Yuan C.-X., Meng Q.-J., Ji Q., A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445 (2011).
75
Averianov A. O., Interpretation of Early Cretaceous mammal Peraiocynodon (Docodonta) and taxonomy of some British Mesozoic docodonts. Russ. J. Theriology 3, 1–4 (2004).
76
Crompton A. W., The dentition and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull. Br. Mus. (Natl. Hist.) Geol. 24, 397–437 (1974).
77
Sigogneau-Russell D., Godefroit P., A primitive docodont (Mammalia) from the Upper Triassic of France and the possible therian affinities of the order. C. R. Acad. Sci. Ser. 2. Sci. Terr. Planet. 324, 135–140 (1997).
78
G. G. Simpson, A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum (Trustees of the British Museum, London, 1928).
79
Simpson G. G., American Mesozoic Mammalia. Mem. Peabody Mus. Yale Univ. 3, 1–235 (1929).
80
Luo Z.-X., Crompton A. W., Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vertebr. Paleontol. 14, 341–374 (1994).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();