Notice: file_put_contents(): Write of 388296 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid | Science Signaling
Skip to main content
Advertisement
Main content starts here

One Exchanger to Open and Close the Pores

Turgor pressure in the guard cells of plant leaves controls pores called stomata, which enable gas exchange and photosynthesis when open and limit water loss when closed. Light opens these pores, whereas the hormone abscisic acid (ABA) keeps them closed. Ions and water imported into or released from the vacuole control the turgor pressure of guard cells. Wege et al. found that Arabidopsis plants lacking the vacuolar anion/proton exchanger AtCLCa did not effectively open or close their stomata. In light, AtCLCa mediated the uptake of anions into the vacuole to aid in opening the pores, and ABA stimulated AtCLCa phosphorylation and enhanced its efflux activity, which helped to close the pores. Thus, a single exchanger can move ions bidirectionally depending on the plant’s photosynthetic and water conservation needs.

Abstract

Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata. We showed that AtCLCa not only fulfilled the expected role of accumulating anions in the vacuole during stomatal opening but also mediated anion release during stomatal closure in response to the stress hormone abscisic acid (ABA). We found that this dual role resulted from a phosphorylation-dependent change in the activity of AtCLCa. The protein kinase OST1 (also known as SnRK2.6) is a key signaling player and central regulator in guard cells in response to ABA. Phosphorylation of Thr38 in the amino-terminal cytoplasmic domain of AtCLCa by OST1 increased the outward anion fluxes across the vacuolar membrane, which are essential for stomatal closure. We provide evidence that bidirectional activities of an intracellular CLC exchanger are physiologically relevant and that phosphorylation regulates the transport mode of this exchanger.

Register and access this article for free

As a service to the community, this article is available for free.

Access the full article

View all access options to continue reading this article.

Supplementary Material

Summary

Fig. S1. The ABA response of stomata aperture is similar in the presence of nitrate instead of chloride.
Fig. S2. Purity and activity of recombinant OST1 and OST1-G33R.
Fig. S3. Characterization of AtCLCa1–86 phosphorylation by mass spectrophotometry.
Fig. S4. Activity of recombinant OST1 in patch-clamp buffer and effect of OST1 on current families evoked in clca-2 knockout mutant.
Fig. S5. Abundance of AtCLCa mRNA in the different genotypes used in the study.

Resources

File (7_ra65_sm.pdf)

REFERENCES AND NOTES

1
Accardi A., Picollo A., CLC channels and transporters: Proteins with borderline personalities. Biochim. Biophys. Acta 1798, 1457–1464 (2010).
2
Feng L., Campbell E. B., Hsiung Y., MacKinnon R., Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–641 (2010).
3
Feng L., Campbell E. B., MacKinnon R., Molecular mechanism of proton transport in CLC Cl/H+ exchange transporters. Proc. Natl. Acad. Sci. U.S.A. 109, 11699–11704 (2012).
4
Stockbridge R. B., Lim H. H., Otten R., Williams C., Shane T., Weinberg Z., Miller C., Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc. Natl. Acad. Sci. U.S.A. 109, 15289–15294 (2012).
5
Barbier-Brygoo H., De Angeli A., Filleur S., Frachisse J. M., Gambale F., Thomine S., Wege S., Anion channels/transporters in plants: From molecular bases to regulatory networks. Annu. Rev. Plant Biol. 62, 25–51 (2011).
6
Stauber T., Jentsch T. J., Chloride in vesicular trafficking and function. Annu. Rev. Physiol. 75, 453–477 (2013).
7
Hara-Chikuma M., Yang B., Sonawane N. D., Sasaki S., Uchida S., Verkman A. S., ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J. Biol. Chem. 280, 1241–1247 (2005).
8
Ishida Y., Nayak S., Mindell J. A., Grabe M., A model of lysosomal pH regulation. J. Gen. Physiol. 141, 705–720 (2013).
9
Li X., Wang T., Zhao Z., Weinman S. A., The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am. J. Physiol. Cell Physiol. 282, C1483–C1491 (2002).
10
Mohammad-Panah R., Harrison R., Dhani S., Ackerley C., Huan L. J., Wang Y., Bear C. E., The chloride channel ClC-4 contributes to endosomal acidification and trafficking. J. Biol. Chem. 278, 29267–29277 (2003).
11
Friedrich T., Breiderhoff T., Jentsch T. J., Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274, 896–902 (1999).
12
Leisle L., Ludwig C. F., Wagner F. A., Jentsch T. J., Stauber T., ClC-7 is a slowly voltage-gated 2Cl/1H+-exchanger and requires Ostm1 for transport activity. EMBO J. 30, 2140–2152 (2011).
13
Weinert S., Jabs S., Supanchart C., Schweizer M., Gimber N., Richter M., Rademann J., Stauber T., Kornak U., Jentsch T. J., Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl accumulation. Science 328, 1401–1403 (2010).
14
De Angeli A., Monachello D., Ephritikhine G., Frachisse J. M., Thomine S., Gambale F., Barbier-Brygoo H., The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939–942 (2006).
15
Costa A., Gutla P. V., Boccaccio A., Scholz-Starke J., Festa M., Basso B., Zanardi I., Pusch M., Schiavo F. L., Gambale F., Carpaneto A., The Arabidopsis central vacuole as an expression system for intracellular transporters: Functional characterization of the Cl/H+ exchanger CLC-7. J. Physiol. 590, 3421–3430 (2012).
16
Hedrich R., Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).
17
Joshi-Saha A., Valon C., Leung J., A brand new START: Abscisic acid perception and transduction in the guard cell. Sci. Signal. 4, re4 (2011).
18
Geiger D., Maierhofer T., Al-Rasheid K. A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., Romeis T., Hedrich R., Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4, ra32 (2011).
19
Imes D., Mumm P., Böhm J., Al-Rasheid K. A., Marten I., Geiger D., Hedrich R., Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74, 372–382 (2013).
20
Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K., CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483–486 (2008).
21
Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., Lamminmäki A., Brosché M., Moldau H., Desikan R., Schroeder J. I., Kangasjärvi J., SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487–491 (2008).
22
Geiger D., Scherzer S., Mumm P., Stange A., Marten I., Bauer H., Ache P., Matschi S., Liese A., Al-Rasheid K. A., Romeis T., Hedrich R., Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. U.S.A. 106, 21425–21430 (2009).
23
Vahisalu T., Puzõrjova I., Brosché M., Valk E., Lepiku M., Moldau H., Pechter P., Wang Y. S., Lindgren O., Salojärvi J., Loog M., Kangasjärvi J., Kollist H., Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J. 62, 442–453 (2010).
24
De Angeli A., Zhang J., Meyer S., Martinoia E., AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun. 4, 1804 (2013).
25
Jossier M., Kroniewicz L., Dalmas F., Le Thiec D., Ephritikhine G., Thomine S., Barbier-Brygoo H., Vavasseur A., Filleur S., Leonhardt N., The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J. 64, 563–576 (2010).
26
Meyer S., Scholz-Starke J., De Angeli A., Kovermann P., Burla B., Gambale F., Martinoia E., Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 67, 247–257 (2011).
27
Geelen D., Lurin C., Bouchez D., Frachisse J. M., Lelièvre F., Courtial B., Barbier-Brygoo H., Maurel C., Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J. 21, 259–267 (2000).
28
De Angeli A., Moran O., Wege S., Filleur S., Ephritikhine G., Thomine S., Barbier-Brygoo H., Gambale F., ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J. Biol. Chem. 284, 26526–26532 (2009).
29
Wege S., Jossier M., Filleur S., Thomine S., Barbier-Brygoo H., Gambale F., De Angeli A., The proline 160 in the selectivity filter of the Arabidopsis NO3/H+ exchanger AtCLCa is essential for nitrate accumulation in planta. Plant J. 63, 861–869 (2010).
30
Leonhardt N., Kwak J. M., Robert N., Waner D., Leonhardt G., Schroeder J. I., Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596–615 (2004).
31
Chen C., Xiao Y. G., Li X., Ni M., Light-regulated stomatal aperture in Arabidopsis. Mol. Plant 5, 566–572 (2012).
32
Barragán V., Leidi E. O., Andrés Z., Rubio L., De Luca A., Fernández J. A., Cubero B., Pardo J. M., Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24, 1127–1142 (2012).
33
Bergsdorf E. Y., Zdebik A. A., Jentsch T. J., Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J. Biol. Chem. 284, 11184–11193 (2009).
34
Guo F. O., Young J., Crawford N. M., The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15, 107–117 (2003).
35
Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S., Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316–1327 (2006).
36
Kollist H., Jossier M., Laanemets K., Thomine S., Anion channels in plant cells. FEBS J. 278, 4277–4292 (2011).
37
Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J., Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).
38
Roelfsema M. R., Hedrich R., Geiger D., Anion channels: Master switches of stress responses. Trends Plant Sci. 17, 221–229 (2012).
39
Belda-Palazón B., Ruiz L., Martí E., Tárraga S., Tiburcio A. F., Culiáñez F., Farràs R., Carrasco P., Ferrando A., Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLOS One 7, e46907 (2012).
40
Boudsocq M., Barbier-Brygoo H., Laurière C., Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279, 41758–41766 (2004).
41
Umezawa T., Sugiyama N., Takahashi F., Anderson J. C., Ishihama Y., Peck S. C., Shinozaki K., Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6, rs8 (2013).
42
Vlad F., Turk B. E., Peynot P., Leung J., Merlot S., A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J. 55, 104–117 (2008).
43
Wang P., Xue L., Batelli G., Lee S., Hou Y. J., Van Oosten M. J., Zhang H., Tao W. A., Zhu J. K., Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U.S.A. 110, 11205–11210 (2013).
44
Sirichandra C., Davanture M., Turk B. E., Zivy M., Valot B., Leung J., Merlot S., The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLOS One 5, e13935 (2010).
45
Whiteman S. A., Serazetdinova L., Jones A. M., Sanders D., Rathjen J., Peck S. C., Maathuis F. J., Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8, 3536–3547 (2008).
46
Reiland S., Finazzi G., Endler A., Willig A., Baerenfaller K., Grossmann J., Gerrits B., Rutishauser D., Gruissem W., Rochaix J. D., Baginsky S., Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc. Natl. Acad. Sci. U.S.A. 108, 12955–12960 (2011).
47
Bertl A., Blumwald E., Coronado R., Eisenberg R., Findlay G., Gradmann D., Hille B., Köhler K., Kolb H. A., Macrobbie E., Meissner G., Miller C., Neher E., Palade P., Pantoja O., Sanders D., Schroeder J., Slayman C., Spanswick R., Walker A., Williams A., Electrical measurements on endomembranes. Science 258, 873–874 (1992).
48
Cookson S. J., Williams L. E., Miller A. J., Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiol. 138, 1097–1105 (2005).
49
Konrad K. R., Hedrich R., The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential–ABA triggered membrane depolarization in guard cells. Plant J. 55, 161–173 (2008).
50
Léran S., Muños S., Brachet C., Tillard P., Gojon A., Lacombe B., Arabidopsis NRT1.1 is a bidirectional transporter involved in root to shoot nitrate translocation. Mol. Plant 6, 1984–1987 (2013).
51
Lin S. H., Kuo H. F., Canivenc G., Lin C. S., Lepetit M., Hsu P. K., Tillard P., Lin H. L., Wang Y. Y., Tsai C. B., Gojon A., Tsay Y. F., Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 2514–2528 (2008).
52
Lee S. C., Lan W., Buchanan B. B., Luan S., A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. U.S.A. 106, 21419–21424 (2009).
53
Bak G., Lee E. J., Lee Y., Kato M., Segami S., Sze H., Maeshima M., Hwang J. U., Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25, 2202–2216 (2013).
54
Graves A. R., Curran P. K., Smith C. L., Mindell J. A., The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).
55
Hosy E., Duby G., Véry A. A., Costa A., Sentenac H., Thibaud J. B., A procedure for localisation and electrophysiological characterisation of ion channels heterologously expressed in a plant context. Plant Methods 1, 14 (2005).
56
Karimi M., Inzé D., Depicker A., GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).
57
Boudsocq M., Droillard M. J., Barbier-Brygoo H., Laurière C., Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol. Biol. 63, 491–503 (2007).
58
Neher E., Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131 (1992).
59
Barthes L., Bousser A., Hoarau J., Deleens E., Reassessment of the relationship between nitrogen supply and xylem exudation in detopped maize seedlings. Plant Physiol. Biochem. 33, 173–183 (1995) http://agris.fao.org/agris-search/search.do?recordID=FR9507283.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.

`; currentEntityStat = entityStat; break; case 1002: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; case 1003: htmlView = "` + ` Access through `+entityStat.entityTitle + " " + `
`; currentEntityStat = entityStat; break; default: htmlView = defaultHtml; break; } } $seamlessAccessWrapper.html(htmlView); }, (error) => { console.log(error); }); }); })();