Warning: file_put_contents(/opt/frankenphp/design.onmedianet.com/storage/proxy/cache/2c84ec1f25c6933952cef86309a237d9.html): Failed to open stream: No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Data processing inequality - Wikipedia Jump to content

Data processing inequality

From Wikipedia, the free encyclopedia

The data processing inequality is an information theoretic concept that states that the information content of a signal cannot be increased via a local physical operation. This can be expressed concisely as 'post-processing cannot increase information'.[1]

Statement

[edit]

Let three random variables form the Markov chain , implying that the conditional distribution of depends only on and is conditionally independent of . Specifically, we have such a Markov chain if the joint probability mass function can be written as

In this setting, no processing of , deterministic or random, can increase the information that contains about . Using the mutual information, this can be written as :

with the equality if and only if . That is, and contain the same information about , and also forms a Markov chain.[2]

Proof

[edit]

One can apply the chain rule for mutual information to obtain two different decompositions of :

By the relationship , we know that and are conditionally independent, given , which means the conditional mutual information, . The data processing inequality then follows from the non-negativity of .

See also

[edit]

References

[edit]
  1. ^ Beaudry, Normand (2012), "An intuitive proof of the data processing inequality", Quantum Information & Computation, 12 (5–6): 432–441, arXiv:1107.0740, Bibcode:2011arXiv1107.0740B, doi:10.26421/QIC12.5-6-4, S2CID 9531510
  2. ^ Cover; Thomas (2012). Elements of information theory. John Wiley & Sons.
[edit]