Notice: file_put_contents(): Write of 99901 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Reassortment - Wikipedia Jump to content

Reassortment

From Wikipedia, the free encyclopedia
Performing reassortment with flu viruses

Reassortment is the mixing of the genetic material of a species into new combinations in different individuals. The product of reassortment is called a reassortant. It is particularly used when two similar viruses that are infecting the same cell exchange genetic material. More specifically, it refers to the swapping of entire segments of the genome, which only occurs between viruses with segmented genomes.[1] (All known viruses with segmented genomes are RNA viruses.)

Flu virus

[edit]

The classical example of reassortment is seen in the influenza viruses, whose genomes consist of eight distinct segments of RNA. These segments act like mini-chromosomes, and each time a flu virus is assembled, it requires one copy of each segment.

If a single host (a human, a chicken, or other animal) is infected by two different strains of the influenza virus, then it is possible that new assembled viral particles will be created from segments whose origin is mixed, some coming from one strain and some coming from another. The new reassortant strain will share properties of both of its parental lineages.

Reassortment is responsible for some of the major antigenic shifts in the history of the influenza virus. In the 1957 "Asian flu" and 1968 "Hong Kong flu" pandemics, flu strains were caused by reassortment between an avian virus and a human virus.[2][3] In addition, the H1N1 virus responsible for the 2009 swine flu pandemic has an unusual mix of swine, avian and human influenza genetic sequences.[4]

Multiplicity reactivation

[edit]

When influenza viruses are inactivated by UV irradiation or ionizing radiation, they remain capable of multiplicity reactivation in infected host cells.[5][6][7] If any of a virus's genome segments is damaged in such a way as to prevent replication or expression of an essential gene, the virus is inviable when it, alone, infects a host cell (single infection). However, when two or more damaged viruses infect the same cell (multiple infection), the infection can often succeed (multiplicity reactivation) due to reassortment of segments, provided that each of the eight genome segments is present in at least one undamaged copy.[8]

Other viruses

[edit]

The reptarenavirus family, responsible for inclusion body disease in snakes, shows a very high degree of genetic diversity due to reassortment of genetic material from multiple strains in the same infected animal.

The 2009 swine flu pandemic resulted from a triple reassortment of bird, swine, and human flu viruses which further combined with a Eurasian pig flu virus, leading to the term "swine flu".

See also

[edit]

References

[edit]
  1. ^ "Genetic Exchange". www.atsu.edu.
  2. ^ "1968 Pandemic (H3N2 virus)". US Centers for Disease Control and Prevention (CDC). 2019-01-22. Retrieved 2021-01-18.
  3. ^ Saunders-Hastings, Patrick R.; Krewski, Daniel (2016-12-06). "Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission". Pathogens. 5 (4): 66. doi:10.3390/pathogens5040066. ISSN 2076-0817. PMC 5198166. PMID 27929449.
  4. ^ "Deadly new flu virus in US and Mexico may go pandemic". New Scientist. 2009-04-24. Retrieved 2009-04-26.
  5. ^ Barry, RD (Aug 1961). "The multiplication of influenza virus. II. Multiplicity reactivation of ultraviolet irradiated virus". Virology. 14 (4): 398–405. doi:10.1016/0042-6822(61)90330-0. PMID 13687359.
  6. ^ Henle, W; Liu, OC (Oct 1951). "Studies on host-virus interactions in the chick embryo-influenza virus system. VI. Evidence for multiplicity reactivation of inactivated virus". J Exp Med. 94 (4): 305–22. PMC 2136114. PMID 14888814.
  7. ^ Gilker, JC; Pavilanis, V; Ghys, R (1967). "Multiplicity reactivation in gamma irradiated influenza viruses". Nature. 214 (5094): 1235–7. doi:10.1038/2141235a0. PMID 6066111.
  8. ^ Michod, RE; Bernstein, H; Nedelcu, AM (May 2008). "Adaptive value of sex in microbial pathogens". Infect Genet Evol. 8 (3): 267–85. doi:10.1016/j.meegid.2008.01.002. PMID 18295550.
[edit]