Notice: file_put_contents(): Write of 152018 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Scandium nitride - Wikipedia Jump to content

Scandium nitride

From Wikipedia, the free encyclopedia
Scandium nitride
Names
IUPAC name
Scandium nitride
Other names
Azanylidynescandium
Nitridoscandium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.938 Edit this at Wikidata
EC Number
  • 247-247-2
  • InChI=1S/N.Sc
    Key: CUOITRGULIVMPC-UHFFFAOYSA-N
  • N#[Sc]
Properties
ScN
Molar mass 58.963
Density 4.4 g/cm3
Melting point 2,600 °C (4,710 °F; 2,870 K)
Hazards
GHS labelling:
GHS07: Exclamation mark
Danger
H228
Related compounds
Other anions
Scandium phosphide
Scandium arsenide
Scandium antimonide
Scandium bismuthide
Other cations
Yttrium nitride
Lutetium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Scandium nitride (ScN) is a binary III-V indirect bandgap semiconductor. It is composed of the scandium cation and the nitride anion. It forms crystals that can be grown on tungsten foil through sublimation and recondensation.[1] It has a rock-salt crystal structure with octahedral bonding coordination. It exhibits lattice constant of 0.451 nm and an indirect bandgap of 0.9 eV and direct bandgap of 2 to 2.4 eV.[1][2] These crystals can be synthesized by dissolving nitrogen gas with indium-scandium melts, magnetron sputtering, Molecular Beam Epitaxy (MBE), HVPE and other deposition methods.[2][3] Scandium nitride is also an effective gate for semiconductors on a silicon dioxide (SiO2) or hafnium dioxide (HfO2) substrate.[4] Scandium nitride is the first nitride semiconductor reported to be synthesized without an active Nitrogen plasma source using the Molecular Beam Epitaxy (MBE) technique. It exhibits a scavenging effect, in which scandium at the growth front dissociates molecular nitrogen and incorporates it into the lattice.[5] Scandium nitride can be potentially used in thermoelectric materials as a semiconducting layer in epitaxial single-crystalline metal/semiconductor superlattices for thermoelectric, plasmonic and thermophotonic applications, and as a substrate material for high-quality GaN-based devices and other solid-state applications.[6]


References

[edit]
  1. ^ a b Gu, Zheng; Edgar, J H; Pomeroy, J; Kuball, M; Coffey, D W (August 2004). "Crystal Growth and Properties of Scandium Nitride". Journal of Materials Science: Materials in Electronics. 15 (8): 555–559. doi:10.1023/B:JMSE.0000032591.54107.2c. S2CID 98462001.
  2. ^ a b Biswas, Bidesh; Saha, Bivas (2019-02-14). "Development of semiconducting ScN". Physical Review Materials. 3 (2) 020301. Bibcode:2019PhRvM...3b0301B. doi:10.1103/physrevmaterials.3.020301. ISSN 2475-9953. S2CID 139544303.
  3. ^ Zhang, Guodong; Kawamura, Fumio; Oshima, Yuichi; Villora, Encarnacion; Shimamura, Kiyoshi (4 August 2016). "Synthesis of Scandium Nitride Crystals from Indium–Scandium Melts". International Journal of Applied Ceramic Technology. 13 (6): 1134–1138. doi:10.1111/ijac.12576.
  4. ^ Yang, Hyundoek; Heo, Sungho; Lee, Dongkyu; Choi, Sangmoo; Hwang, Hyunsang (13 January 2006). "Effective Work Function of Scandium Nitride Gate Electrodes on SiO2 and HfO2". Japanese Journal of Applied Physics. 45 (2): L83 – L85. Bibcode:2006JaJAP..45L..83Y. doi:10.1143/JJAP.45.L83. S2CID 121206924.
  5. ^ Savant, Chandrashekhar P.; Verma, Anita; Nguyen, Thai-Son; van Deurzen, Len; Chen, Yu-Hsin; He, Zhiren; Rezaie, Salva S.; Gollwitzer, Jakob; Gregory, Benjamin; Sarker, Suchismita; Ruff, Jacob; Khalsa, Guru; Singer, Andrej; Muller, David A.; Xing, Huili G. (2024-11-06). "Self-activated epitaxial growth of ScN films from molecular nitrogen at low temperatures". APL Materials. 12 (11): 111108. doi:10.1063/5.0222995. ISSN 2166-532X.
  6. ^ Shi, X.; Kong, H.; Li, C.-P.; Uher, C.; Yang, J.; Salvador, J. R.; Wang, H.; Chen, L.; Zhang, W. (2008-05-05). "Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites". Applied Physics Letters. 92 (18). doi:10.1063/1.2920210. ISSN 0003-6951.