Scandium nitride
![]() | |
Names | |
---|---|
IUPAC name
Scandium nitride
| |
Other names
Azanylidynescandium
Nitridoscandium | |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.042.938 |
EC Number |
|
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
ScN | |
Molar mass | 58.963 |
Density | 4.4 g/cm3 |
Melting point | 2,600 °C (4,710 °F; 2,870 K) |
Hazards | |
GHS labelling: | |
![]() | |
Danger | |
H228 | |
Related compounds | |
Other anions
|
Scandium phosphide Scandium arsenide Scandium antimonide Scandium bismuthide |
Other cations
|
Yttrium nitride Lutetium nitride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Scandium nitride (ScN) is a binary III-V indirect bandgap semiconductor. It is composed of the scandium cation and the nitride anion. It forms crystals that can be grown on tungsten foil through sublimation and recondensation.[1] It has a rock-salt crystal structure with octahedral bonding coordination. It exhibits lattice constant of 0.451 nm and an indirect bandgap of 0.9 eV and direct bandgap of 2 to 2.4 eV.[1][2] These crystals can be synthesized by dissolving nitrogen gas with indium-scandium melts, magnetron sputtering, Molecular Beam Epitaxy (MBE), HVPE and other deposition methods.[2][3] Scandium nitride is also an effective gate for semiconductors on a silicon dioxide (SiO2) or hafnium dioxide (HfO2) substrate.[4] Scandium nitride is the first nitride semiconductor reported to be synthesized without an active Nitrogen plasma source using the Molecular Beam Epitaxy (MBE) technique. It exhibits a scavenging effect, in which scandium at the growth front dissociates molecular nitrogen and incorporates it into the lattice.[5] Scandium nitride can be potentially used in thermoelectric materials as a semiconducting layer in epitaxial single-crystalline metal/semiconductor superlattices for thermoelectric, plasmonic and thermophotonic applications, and as a substrate material for high-quality GaN-based devices and other solid-state applications.[6]
References
[edit]- ^ a b Gu, Zheng; Edgar, J H; Pomeroy, J; Kuball, M; Coffey, D W (August 2004). "Crystal Growth and Properties of Scandium Nitride". Journal of Materials Science: Materials in Electronics. 15 (8): 555–559. doi:10.1023/B:JMSE.0000032591.54107.2c. S2CID 98462001.
- ^ a b Biswas, Bidesh; Saha, Bivas (2019-02-14). "Development of semiconducting ScN". Physical Review Materials. 3 (2) 020301. Bibcode:2019PhRvM...3b0301B. doi:10.1103/physrevmaterials.3.020301. ISSN 2475-9953. S2CID 139544303.
- ^ Zhang, Guodong; Kawamura, Fumio; Oshima, Yuichi; Villora, Encarnacion; Shimamura, Kiyoshi (4 August 2016). "Synthesis of Scandium Nitride Crystals from Indium–Scandium Melts". International Journal of Applied Ceramic Technology. 13 (6): 1134–1138. doi:10.1111/ijac.12576.
- ^ Yang, Hyundoek; Heo, Sungho; Lee, Dongkyu; Choi, Sangmoo; Hwang, Hyunsang (13 January 2006). "Effective Work Function of Scandium Nitride Gate Electrodes on SiO2 and HfO2". Japanese Journal of Applied Physics. 45 (2): L83 – L85. Bibcode:2006JaJAP..45L..83Y. doi:10.1143/JJAP.45.L83. S2CID 121206924.
- ^ Savant, Chandrashekhar P.; Verma, Anita; Nguyen, Thai-Son; van Deurzen, Len; Chen, Yu-Hsin; He, Zhiren; Rezaie, Salva S.; Gollwitzer, Jakob; Gregory, Benjamin; Sarker, Suchismita; Ruff, Jacob; Khalsa, Guru; Singer, Andrej; Muller, David A.; Xing, Huili G. (2024-11-06). "Self-activated epitaxial growth of ScN films from molecular nitrogen at low temperatures". APL Materials. 12 (11): 111108. doi:10.1063/5.0222995. ISSN 2166-532X.
- ^ Shi, X.; Kong, H.; Li, C.-P.; Uher, C.; Yang, J.; Salvador, J. R.; Wang, H.; Chen, L.; Zhang, W. (2008-05-05). "Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites". Applied Physics Letters. 92 (18). doi:10.1063/1.2920210. ISSN 0003-6951.