Notice: file_put_contents(): Write of 75960 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36

Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17

Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20
Neutron capture nucleosynthesis - Wikipedia Jump to content

Neutron capture nucleosynthesis

From Wikipedia, the free encyclopedia

Neutron capture nucleosynthesis describes two nucleosynthesis pathways: the r-process and the s-process, for rapid and slow neutron captures, respectively. R-process describes neutron capture in a region of high neutron flux, such as during supernova nucleosynthesis after core-collapse, and yields neutron-rich nuclides. S-process describes neutron capture that is slow relative to the rate of beta decay, as for stellar nucleosynthesis in some stars, and yields nuclei with stable nuclear shells. Each process is responsible for roughly half of the observed abundances of elements heavier than iron. The importance of neutron capture to the observed abundance of the chemical elements was first described in 1957 in the B2FH paper.[1]

References

[edit]
  1. ^ Wallerstein, George; Icko Iben, Jr.; Peter Parker; Ann Merchant Boesgaard; et al. (1997). "Synthesis of the elements in stars: forty years of progress" (PDF). Reviews of Modern Physics. 69 (4): 995. Bibcode:1997RvMP...69..995W. doi:10.1103/RevModPhys.69.995. hdl:2152/61093.

Further reading

[edit]