Notice: file_put_contents(): Write of 299808 bytes failed with errno=28 No space left on device in /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php on line 36
Warning: http_response_code(): Cannot set response code - headers already sent (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 17
Warning: Cannot modify header information - headers already sent by (output started at /opt/frankenphp/design.onmedianet.com/app/src/Arsae/CacheManager.php:36) in /opt/frankenphp/design.onmedianet.com/app/src/Models/Response.php on line 20 Portal:Renewable energy - WikipediaJump to content
Renewable energy (also called green energy) is energy made from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power, and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source, although this is controversial, as nuclear energy requires mining uranium, a nonrenewable resource. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification. This has several benefits: electricity can move heat and vehicles efficiently and is clean at the point of consumption. Variable renewable energy sources are those that have a fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity, bioenergy, or geothermal power.
Renewable energy systems have rapidly become more efficient and cheaper over the past 30 years. A large majority of worldwide newly installed worldwide electricity capacity is now renewable. Renewable energy sources, such as solar and wind power, have seen significant cost reductions over the past decade, making them more competitive with traditional fossil fuels. In some geographic localities, photovoltaic solar or onshore wind is the cheapest new-build electricity. From 2011 to 2021, renewable energy grew from 20% to 28% of the global electricity supply. Power from the sun and wind accounted for most of this increase, growing from a combined 2% to 10%. Use of fossil energy shrank from 68% to 62%. In 2024, renewables accounted for over 30% of global electricity generation and are projected to reach over 45% by 2030. Many countries already have renewables contributing more than 20% of their total energy supply, with some generating over half or even all their electricity from renewable sources.
The main motivation to use renewable energy instead of fossil fuels is to slow and eventually stop climate change, which is mostly caused by their greenhouse gas emissions. In general, renewable energy sources pollute much less than fossil fuels. The International Energy Agency estimates that to achieve net zero emissions by 2050, 90% of global electricity will need to be generated by renewables. Renewables also cause much less air pollution than fossil fuels, improving public health, and are less noisy.
The deployment of renewable energy still faces obstacles, especially fossil fuel subsidies, lobbying by incumbent power providers, and local opposition to the use of land for renewable installations. Like all mining, the extraction of minerals required for many renewable energy technologies also results in environmental damage. In addition, although most renewable energy sources are sustainable, some are not. (Full article...)
A tide mill is a water mill driven by tidal rise and fall. A dam with a sluice is created across a suitable tidal inlet, or a section of river estuary is made into a reservoir. As the tide comes in, it enters the mill pond through a one-way gate, and this gate closes automatically when the tide begins to fall. When the tide is low enough, the stored water can be released to turn a water wheel.
Tide mills are usually situated in river estuaries, away from the effects of waves but close enough to the sea to have a reasonable tidal range. Cultures that built such mills have existed since the Middle Ages, and some may date back to the Roman period.
"Renewable energy provides 18 percent of total net electricity generation worldwide. Renewable energy generators are spread across the globe, and wind power alone already provides a significant share of electricity in some regions: for example, 14 percent in the U.S. state of Iowa, 40 percent in the northern German state of Schleswig-Holstein, and 20 percent in the nation of Denmark. Some countries get most of their power from renewables, including Iceland (100 percent), Brazil (85 percent), Austria (62 percent), New Zealand (65 percent), and Sweden (54 percent)."
"Solar hot water provides an important contribution to meeting hot water needs in many countries, most importantly in China, which now has fully 70 percent of the global total (180 GWth)... Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. Notable is Sweden, where national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly."
"Renewable biofuels are meanwhile making inroads in the transportation fuels market and are beginning to have a measurable impact on demand for petroleum fuels, contributing to a decline in oil consumption in the United States in particular starting in 2006... The 93 billion liters of biofuels produced worldwide in 2009 displaced the equivalent of an estimated 68 billion liters of gasoline, equal to about 5 percent of world gasoline production."
John Ingle Yellott (October 25, 1908 – December 30, 1986) was an American engineer recognized as a pioneer in passive solar energy, and an inventor with many patents to his credit. In his honor the American Society of Mechanical Engineers (ASME) Solar Division confers a biannual "John I. Yellott Award" which "recognizes ASME members who have demonstrated sustained leadership within the Solar Energy Division, have a reputation for performing high-quality solar energy research and have made significant contributions to solar engineering through education, state or federal government service or in the private sector." (Full article...)
... that because solar cookers use no fuel and they cost nothing to run, humanitarian organizations are promoting their use worldwide to help slow deforestation and desertification, caused by using wood as fuel for cooking ? Solar Cookers are a form of outdoor cooking and are often used in situations where minimal fuel consumption is important, or the danger of accidental fires is high.
Image 2The Warwick Castle water-powered generator house, used for the generation of electricity for the castle from 1894 until 1940 (from Hydroelectricity)
Image 3Seasonal cycle of capacity factors for wind and photovoltaics in Europe under idealized assumptions. The figure illustrates the balancing effects of wind and solar energy at the seasonal scale (Kaspar et al., 2019). (from Wind power)
Image 7Enhanced geothermal system 1:Reservoir 2:Pump house 3:Heat exchanger 4:Turbine hall 5:Production well 6:Injection well 7:Hot water to district heating 8:Porous sediments 9:Observation well 10:Crystalline bedrock (from Geothermal energy)
Image 11Yearly hydro generation by continent (from Hydroelectricity)
Image 12Krafla Geothermal Station in northeast Iceland (from Geothermal energy)
Image 13Typical components of a wind turbine (gearbox, rotor shaft and brake assembly) being lifted into position (from Wind power)
Image 14A turbine blade convoy passing through Edenfield in the U.K. (2008). Even longer 2-piece blades are now manufactured, and then assembled on-site to reduce difficulties in transportation. (from Wind power)
Image 16Distribution of wind speed (red) and energy (blue) for all of 2002 at the Lee Ranch facility in Colorado. The histogram shows measured data, while the curve is the Rayleigh model distribution for the same average wind speed. (from Wind power)
Image 17Electricity generation at Ohaaki, New Zealand (from Geothermal energy)
Image 18Concentrated solar panels are getting a power boost. Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system – one that can help natural gas power plants reduce their fuel usage by up to 20 percent.[needs update] (from Solar energy)
Image 25World electricity production by source, 2000-2024 (from Wind power)
Image 26The Hoover Dam in the United States is a large conventional dammed-hydro facility, with an installed capacity of 2,080 MW. (from Hydroelectricity)
Image 45Merowe Dam in Sudan. Hydroelectric power stations that use dams submerge large areas of land due to the requirement of a reservoir. These changes to land color or albedo, alongside certain projects that concurrently submerge rainforests, can in these specific cases result in the global warming impact, or equivalent life-cycle greenhouse gases of hydroelectricity projects, to potentially exceed that of coal power stations. (from Hydroelectricity)
Image 46Energy from wind, sunlight or other renewable energy is converted to potential energy for storage in devices such as electric batteries or higher-elevation water reservoirs. The stored potential energy is later converted to electricity that is added to the power grid, even when the original energy source is not available. (from Wind power)
Image 47Acceptance of wind and solar facilities in one's community is stronger among U.S. Democrats (blue), while acceptance of nuclear power plants is stronger among U.S. Republicans (red). (from Wind power)
Image 48Museum Hydroelectric power plant "Under the Town" in Užice, Serbia, built in 1900 (from Hydroelectricity)
Image 54Wind turbines such as these, in Cumbria, England, have been opposed for a number of reasons, including aesthetics, by some sectors of the population. (from Wind power)